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This article describes a method for assessing hotel management using 
Pythagorean Fuzzy Numbers inside a Multi-attribute Decision-Making 
framework. It offers a grey relational analysis projection to deal with 
scenarios in which attribute values fluctuate within the Pythagorean Fuzzy 
Set range and attribute weights are unknown. The study developed 
numerous operational rules and computed the anticipated value and the 
Hamming distance between two Pythagorean Fuzzy Sets. The information 
entropy method was then utilized to calculate attribute weights, creating the 
Grey Relational Analysis and Grey Relational Projection methodologies. 
Alternatives were rated based on their proximity to the Positive Ideal Target 
using Grey Relational Projection values from both positive and negative ideal 
solutions for each alternative. The validity of this model was verified 
through a case study on hotel management evaluation, demonstrating its 
practicality and effectiveness, and Comparative Analysis involving the 
adjustment of criteria weight coefficients. 
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1. Introduction 
The worldwide landscape has become more digitalized and networked, leading to a substantial 

increase in the complexity of decision-making processes in various industries, including technology, 
healthcare, and finance. Traditional decision-making methods frequently need to improve when 
faced with large volumes and ambiguity of modern data streams. Pythagorean Fuzzy Numbers 
(PFNs) offer an enhanced solution to uncertainty and partial truth, making them an effective tool 
for navigating these complications. PFNs' flexibility and robustness enable better modeling of 
uncertain information, making them especially useful when standard methods cannot fully capture 
the specifics of real-world data. Building upon the foundational concepts of fuzzy logic, 
Pythagorean Fuzzy Numbers (PFNs) present an advanced framework that extends these principles 
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by offering a more flexible and nuanced way to represent uncertainty. Unlike traditional fuzzy 
numbers constrained by the linear condition of u + v ≪ 1(where u and v represent the degrees of 
membership and non-membership, respectively), PFNs employ a quadratic constraint u2 + v2 ≪ 1. 
This modification allows for a richer and more detailed characterization of uncertain and imprecise 
information, which is particularly beneficial in MCDM applications. By integrating PFNs, we can 
enhance the analytical capabilities of decision-making models, especially in environments where 
clarity and certainty are limited, thus facilitating more informed and practical decision processes.  

2. Literature review  
Multi-criteria decision-making (MCDM) is a combinational scheme that allows decision-makers 

to determine appropriate alternatives based on various criteria. Zadeh [1] initiated the fuzzy theory 
in 1965 to overcome uncertainties and fuzziness. In 1986, Atanassov [2] expanded the idea of the 
fuzzy theory to postulate an Intuitionistic Fuzzy Set (IFS), namely, u ϵ [0,1] and v ϵ [0,1]. The IFS 
guarantees that the sum of the membership point (u) and the non-membership point (v) will be ≤ 1. 
This Intuitionistic Fuzzy Set (IFS) is used extensively in various fields, including Multi-attribute 
Decision-making (MADM). However, the sum of u and v will be ≥ 1 if DM expresses support for u in 
x as 0.9 and in opposition to u in x as 0.6. As a result, the paired numbers (0.9, 0.6) cannot be used 
in an IFS. To compensate for this deficiency and meet the requirement, Yager designed a 
Pythagorean Fuzzy Set (PFS) element, which has two functions: u and v (u2 + v2 ≤1). The main 
difference between a PFS and Atanassov’s IFS is that the former must satisfy the situation in which 
the square sum of the u degree and the v degree is ≤ 1, while the sum of the two degrees must not 
be ≤ 1, whereas the latter must satisfy the situation in which the sum of the two degrees is ≤ 1. 
Following this finding, Zhang and Xu [3] reported on the PFS TOPSIS for MADM. Shannon [4] 
explained the GRA, and Zhang and Xu [3] extended the PFS to interval-valued PFSs (IVPFSs). Yager 
[5] utilized PFSs to solve the recommender system.  Huang et al. [6] explained the entropy weight 
calculation, and Yager [7] utilized the PFS and conducted a case study of Netflix movie data. In 
addition, Zhang explained the entropy weight [8] for PFS. In addition, different discussions [9, 10, 
11]  have been made on the multi-criteria decision. Deng [12] elaborates on the Grey Relational 
Analysis.  Chen et al. [13] utilized the TOPSIS method and similarity measures between IFS.  
Chatterjee and Kara [14] presented an integrated CRITIC and GRA approach for investment 
decision-making, demonstrating its efficacy in evaluating multiple investment options based on 
various criteria. Jokić et al. [15]   utilized a combination of the LBWA and fuzzy MABAC models to 
optimize the selection of fire positions for mortar units.  Radovanović et al. [16] introduced a hybrid 
model, LMAW-G-EDAS, to aid in selecting assault rifles for military use. In agriculture, Nedeljković et 
al. [17] employed a multicriteria approach to enhance the establishment of fruit orchards, explicitly 
focusing on plum variety selection. Imran et al. [18] proposed a multi-criteria group decision-
making approach using interval-valued intuitionistic fuzzy information combined with Aczel-Alsina 
Bonferroni means for robot selection. Bouraima et al. [19] applied the AROMAN MCDM approach 
to devise sustainable healthcare system devolution strategies. Yazdi and Komasi [20] explored the 
performance of COVID-19 management in the Americas using artificial intelligence integrated with 
MCDM. Badi et al. [21] investigated vendor-managed inventory optimization in multi-tier 
distribution systems using an MCDM approach. Nzotcha and Kenfack [22] comprehensively assess 
renewable energy investment strategies utilizing Interval Type-2 (IT2) fuzzy DEMATEL, TOPSIS, and 
grey relational analysis. In the realm of photovoltaic solar farm site selection, Noorollahi et al. [23] 
employ a GIS-based approach combined with fuzzy Boolean logic and grey relational analysis. 
Zhong et al. [24] introduce a hybrid fuzzy multi-criteria decision analysis (MCDA) approach, which 
effectively evaluates the performance of park-level integrated energy systems. Moreover, the 
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potential of offshore wind energy is explored through spatial MCDA by Vinhoza and Schaeffer [25], 
who utilize the Analytic Hierarchy Process (AHP) and grey relational analysis to assess wind energy 
potential. The theoretical underpinnings of MCDM methods are well-documented by Taherdoost 
and Madanchian [26], who provide a detailed overview of various MCDM concepts and 
methodologies. Additionally, Cai et al. [27] offer a survey on collaborative decision-making, 
highlighting its growing relevance in engineering applications. Lastly, Liao et al. [28]   explore 
interval analysis techniques and their fuzzy extensions within MCDM. Their overview presents a 
detailed examination of how fuzzy systems can enhance decision-making accuracy in situations 
characterized by uncertainty and imprecision. 

The outline of this paper is as follows: Part 1 reviews some basic definitions. Part 2 introduces 
PFS and explains some arithmetical operations. Part 3 presents a novel strategy for solving MADM 
issues with PFS. Part 4 gives a practical explanation of a numerical problem. Finally, Part 5 presents 
the concluding remarks. 

2.1 Materials and Methods  
Given the complexity of the research problem, a model incorporating PFS and Grey Relational 

Analysis (GRA) was developed to aid in the selection of hotels. Initially, experts defined the analysis 
criteria. The GRA method was then utilized to determine the weight coefficients of these criteria. 
The GRA method was applied to evaluate and select the most suitable hotel alternatives. See the 
flowchart of the study in Figure 1. 

 
Fig. 1. Flowchart of the study. 

2.2 Grey Relational Analysis (GRA) Method 
The Grey Relational Analysis (GRA) [11] method is vital in decision-making and multi-criteria 

analysis. Originating from Grey System Theory, GRA is particularly effective when the information is 
incomplete or uncertain, making it suitable for handling complex relationships among multiple 
factors in a system. Combining GRA with PFNs enhances the ability to analyze complex systems with 
inherent uncertainties. For steps of GRA, see Table 1.  
  

Phase 1  

Phase 2  

Phase 3  

• Define the Criteria 

• Determination of the weighting coefficient of the criteria using GRA 
  

• Define the alternatives and the initial decision matrix  

• Selection of the best Alternative using the GRA method 

• Comparative analysis of the obtained results   
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Table 1 
Steps of the GRA Method 

Step.1 Initializing the Matrix, 𝑁 = (�̃�𝑖𝑗)𝑚×𝑛                                              

Step.2 Standardization of the decision matrix 

Cost type criteria,  𝐶𝑇𝑖𝑗
𝑝 =

max(𝑎𝑖𝑗
1 )−𝑎𝑖𝑗

𝑝

max(𝑎𝑖𝑗
2 )−min(𝑎𝑖𝑗

1 )
    𝑧 = 1,2                             

Benefit type criteria,  𝐵𝑇𝑖𝑗
𝑝 =

𝑎𝑖𝑗
𝑝

−min(𝑎𝑖𝑗
1 )

max(𝑎𝑖𝑗
2 )−min(𝑎𝑖𝑗

1 )
    𝑧 = 1,2                  

Step. 3 Calculating the attributed weight 

𝑤𝑗 =
∑𝑛

𝑗=1 𝐻𝑗+1−2×𝐻𝑗

∑
𝑞
𝑗=1

(∑
𝑞
𝑗=1

𝐻𝑦+1−2×𝐻𝑗)
 (1 ≤ 𝑦 ≤ 𝑞)                                              

Step. 4 Calculating the PIT and NIT,  𝑛 𝑝+= (𝑛1
+, 𝑛2

+, … … … . , 𝑛𝑝
+), where, 

𝑛𝑝
+ can be evaluated using: 

𝑛𝑗
+ = (max

𝑖⏟
⬚

𝜇𝑖𝑗(𝑥) min
𝑖⏟

⬚

(𝜐𝑖𝑗) min
𝑖⏟

⬚

(𝜋𝑖𝑗))                                             

𝑛− = (𝑛1
−, 𝑛2

−, … … … . , 𝑛𝑞
−) where, each 𝑛𝑞

− can be calculated using 

the following relation: 

𝑛𝑞
+ = (min

𝑖⏟
⬚

𝜇𝑖𝑗(𝑥) max
𝑖⏟

⬚

(𝜐𝑖𝑗) max
𝑖⏟

⬚

(𝜋𝑖𝑗))                                        

Step. 4 Calculating the GRC of PIT and NIT  

𝜑𝑖𝑗
+ =

𝑇++𝜑𝑊+

𝑑𝑖𝑗
+ +𝜑𝑃+                                                                                                     

𝜑𝑖𝑗
− =

𝑇−+𝜑𝑊−

𝑑𝑖𝑗
− +𝜑𝑃−                                                                                       

Step. 5 Calculating the GRG 

𝜍𝑖
+ = ∑𝑞

𝑗=1 𝑤𝑗𝜑𝑖𝑗+                                                                                       

𝜍𝑖
− = ∑𝑞

𝑗=1 𝑤𝑗𝜑𝑖𝑗−                                                                                  

Step.6      Calculating the weight in the GRP was:  

𝑤𝑗 =
𝑤𝑗

2

√∑
𝑞
𝑗=1

𝑤𝑗
2
                                                                                      

 The weight in the GRP technique for the alternative PIT and NIT was:  

℘𝑖
+ = ∑𝑞

𝑗 (𝑤𝑗 × 𝜍𝑖𝑗
+)                                                                             

℘𝑖
− = ∑𝑞

𝑗 (𝑤𝑗 × 𝜍𝑖𝑗
−)                                                                      

Step.7 Estimating the similitude to PIT and Ranking the alternatives: 

𝑅𝐶𝑖 =
𝜍𝑖

+

𝜍𝑖
+−𝜍𝑖

−                                                                                                                                    

 𝑅𝐶𝑖 =
∑

𝑞
𝑗 (𝑤𝑗×𝜍𝑖𝑗

+ )

∑
𝑞
𝑗

(𝑤𝑗+℘𝑖
−) ∑

𝑞
𝑗

(𝑤𝑗×𝜍𝑖𝑗
− )

                                                                                                   

3.  Basic Definitions  
This section discusses basic topics, such as properties, operations, and PFNs. 
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Definition 3.1 [3] where X is a fixed set and a PFS P in X is an object in the form of: 

 P = < 𝑥, 𝑃 (𝜇𝑝(𝑥)𝜐𝑝(𝑥)) > |𝑥𝜀𝑋)  

where the function 𝜇𝑝: 𝑋 → [0,1] is the u of the 𝑥𝜖𝑋 element to the P set and the function 𝜐𝑝: 𝑋 →
[0,1] denotes the v of the 𝑥𝜖𝑋 element to the P set. For any PFP set and 𝑥𝜖𝑋, 

 0 ≤ (𝜇𝑝(𝑥))2 + (𝜐𝑝(𝑥))2 ≤ 1  

the function 𝜋𝑝 was considered the hesitant point of the 𝑥𝜖𝑋 element to P set. For any PF set and 

𝑥𝜖𝑋, 

 𝜋𝑝(𝑥) = √1 − (𝜇𝑝(𝑥))2 − (𝜐𝑝(𝑥))2. 

For convenience, Zhang and Xu [16,17] defined PFNs as follows: 

A PS set can be expressed as 𝑃 = (𝜇𝑝, 𝜐𝑝), where 𝜇𝑝 and 𝜐𝑝𝜖[0,1] and 

 𝐻𝑝 = (1 − (𝜇𝑝(𝑥))2 − (𝜐𝑝(𝑥))2)
1

2 and 0 ≤ (𝜇𝑝(𝑥))2 + (𝜐𝑝(𝑥))2 ≤ 1.  

Definition 3.2 [5] 

where, 𝑎𝑝
1 = (𝜇𝑝

𝑖 , 𝜐𝑝
𝑗
) and 𝑏𝑝

1 = (𝜇𝑝
𝑘, 𝜐𝑝

𝑙 ) are the two PFNs. Then, the arithmetic operation is as 

follows: 
Additive property: 

𝑎𝑝
1 ⊕ 𝑏𝑝

1 = [√(𝜇𝑝
𝑖 )2 + (𝜇𝑝

𝑘)2 − (𝜇𝑝
𝑖 )2. (𝜇𝑝

𝑘)2, 𝜐𝑝
𝑗
. 𝜐𝑝

𝑙 ]  

Multiplicative property: 

𝑎𝑝
1 ⊗ 𝑏𝑝

1 = [𝜇𝑝
𝑖 . 𝜇𝑝

𝑘, √(𝜐𝑝
𝑗
)2 + (𝜐𝑝

𝑙 )2 − (𝜐𝑝
𝑗
)2. (𝜐𝑝

𝑙 )2]  

Scalar Product: 

𝐾. 𝑎𝑝
1  = √1 − (1 − 𝜇𝑝

𝑖 )𝐾(𝜐𝑝
𝑗
)𝐾 where K is a nonnegative constant, i.e 𝐾 ≻ 0  

Definition 3.3[5] Comparison of two PFNs 

where, 𝑎𝑝
1 = (𝜇𝑝

𝑖  𝜐𝑝
𝑗
) and 𝑏𝑝

1 = (𝜇𝑝
𝑘, 𝜐𝑝

𝑙 ) are the two PFNs. As such, the accuracy function and the 

score function are as follows: 

(i) Score Function: 𝑆(𝑎𝑝
1) =

1

2
(1 − (𝜇𝑝

𝑖 )2 − (𝜐𝑝
𝑗
)2  

(ii) Accuracy Function : 𝐴(𝑎𝑝
1) = (𝜇𝑝

𝑖 )2 + (𝜐𝑝
𝑗
)2 

Then, the following cases arise : 

Case I: 𝑎𝑝
1 ≻ 𝑏𝑝 iff 𝑆(𝑎𝑝

1) ≻ 𝑆(𝑏𝑝
1) 

Case II: 𝑎𝑝
1 ≺ 𝑏𝑝 iff 𝑆(𝑎𝑝

1) ≺ 𝑆(𝑏𝑝
1) 

Case III: 𝑖𝑓𝑆(𝑎𝑝
1) = 𝑆(𝑏𝑝

1) and 𝐴(𝑎𝑝
1) ≻ 𝐴(𝑏𝑝

1) the 𝑎𝑝
1 ≻ 𝑏𝑝

1 

Case IV: 𝑖𝑓𝑆(𝑎𝑝
1) = 𝑆(𝑏𝑝

1) and 𝐴(𝑎𝑝
1) ≺ 𝐴(𝑏𝑝

1) the 𝑎𝑝
1 ≺ 𝑏𝑝

1 

Case V: 𝑖𝑓𝑆(𝑎𝑝
1) = 𝑆(𝑏𝑝

1) and 𝐴(𝑎𝑝
1) = 𝐴(𝑏𝑝

1) the 𝑎𝑝
1 = 𝑏𝑝

1 

Definition 3.4 [5], where Q and W are the two PFSs. Then, Q and W are similar sets if they hold 
these conditions: ⅁𝑄(𝑥) = ⅁𝑊(𝑥)𝑜𝑟℧𝑄(𝑥) = ℧𝑊(𝑥)  

Definition 3.5 [5] where S and J are the two PFSs. Then, Q and W are comparable sets if they 
hold these conditions: ȠS(x)=£J(x) or ȠS(x)=£J(x)  

 Definition 3.6 [5]    where Q and W are the two PFSs. Then, Q and W are equivalent sets if they 
hold this condition: b: €Q(x) →&W(x) b: € Q(x)→&W(x) both are bijective functions.  

Definition 3.7 [5]   where Q and W are the two PFSs. Then, Q is the subset of W, and W is called 
a superset of Q if they satisfy this condition:  €Q(x) ≤ €W(x) and βS(x) ≤ βW(x)  
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Definition 3.8 [5], where Q and W are the two PFSs. Then, Q is called the proper subset of W it 
holds this condition: Q⊆ W, Q ≠W.  

Definition 3.9 [5], where Q, W, and Y are the three PFSs. Then, Reflexive: Q = Q, Symmetric: Q = 
W and W = Q. Transitive: Q = W, W = Y and Y = Q 

Definition 3.10 [5]   The expected value of the PFN can be defined as follows: 𝐼𝑝 =
1

2
|1 + 𝜇𝑝

𝑖 −

𝜐𝑝
𝑖 − 𝜋𝑝

𝑖 | where, 𝜇𝑝
𝑖  is the degree of u, 𝜐𝑝

𝑖  is the degree of v, and 𝜋𝑝
𝑖  is the degree of hesitation.  

4. Algorithm Developed using Pythagorean Fuzzy numbers (PFNs) 
This section offers a solution to MADM problems based on model-based PFNs. In this approach, 

preferences for multiple alternatives are indicated as PFNs, and the weight vector for each criterion 
is determined using a heuristic algorithm. The total aggregated value is obtained by ranking the 
entries that use the basis similarly. 

Assume that there are m alternatives for 𝐴 = (𝐴1, 𝐴2, … , 𝐴𝑚), and n evaluation criteria for a 
MADM problem. 𝑄 = 𝑄1, 𝑄2 … . 𝑄𝑛 and 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛) are the corresponding weight vectors 
for an attribute so that 𝜔𝑗 ∈ [0, 1] and the specified value, 𝑤𝑗 is unknown such that the 

characteristics of each alternative are given in the form of PFNs as 𝛼𝑖𝑗 =< [𝑎𝑖𝑗, 𝑏𝑖𝑗] >, (𝑖 =

1,2 … … 𝑚, 𝑗 = 1,2 … … . . 𝑛), where 𝑎𝑖𝑗 gives the degree in favorable terms and 𝑏𝑖𝑗 gives the degree 
against the i alternative concerning the j criteria. Thus, a Pythagorean fuzzy (PF) decision matrix, to 
denote the decision matrix, D, can be formulated as  
𝑁 = ([𝑛𝑖𝑗]𝑚×𝑛)  (1)   

where 𝑛𝑖𝑗
𝑧 = [𝑎𝑖𝑗

1 , 𝑎𝑖𝑗
2 ]. Thus, the methodology for the normalization of two distinct kinds of criteria 

can be given below: 
Cost type criteria: 

𝐶𝑇𝑖𝑗
𝑝

=
max(𝑎𝑖𝑗

1 )−𝑎𝑖𝑗
𝑝

max(𝑎𝑖𝑗
2 )−min(𝑎𝑖𝑗

1 )
    𝑧 = 1,2               (2) 

 Benefit type criteria:  

𝐵𝑇𝑖𝑗
𝑝 =

𝑎𝑖𝑗
𝑝

−min(𝑎𝑖𝑗
1 )

max(𝑎𝑖𝑗
2 )−min(𝑎𝑖𝑗

1 )
    𝑧 = 1,2              (3) 

4.1 Calculating the Attribute Weight 
There are several approaches for determining attribute weights. This section discusses the 

information entropy technique for calculating attribute weights. Shannon [4] established the 
entropy approach, similar to uncertainty, as an essential concept in thermodynamics. Entropy is a 
concept used in various areas, including management science and engineering science, to quantify 
the degree of disorder, distribution unevenness, and so on. In mathematics, entropy calculates the 
uncertainty and quality of useful information. 

Entropy is a fundamental concept that asserts that the fuzzier a system, the higher the entropy 
value. So, the attribute values of all the alternatives fluctuate significantly under the attributes. In 
that case, the attributes will be recognized as having the greatest EP since they provide the 
necessary knowledge to put the alternatives in place, so they have minimal relevance in the 
prioritization technique. On the other hand, if the attribute values of all options differ considerably, 
these qualities have low entropy and help select the optimal choice. 

So, while calculating the alternative, if one attribute has the highest entropy, a low weight will 
be assigned to it, and if one attribute has the lowest entropy, a high weight will be assigned to it. 
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The formulae below were used to verify the entropy value of an attribute: 𝐸𝑗 = −𝑍 ×

∑𝑛
𝑥=1 𝑓𝑖𝑗𝑙𝑛𝑓𝑥𝑦   (1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞), where, = 𝑍

1

𝑙𝑝𝑞
 and, if 𝑓𝑖𝑗 = 0, then 0 × 𝑙𝑛0 = 0. 𝑓𝑖𝑗 =

𝐼(𝑟𝑖𝑗)

∑
𝑞
𝑥=1 𝐼(𝑟𝑖𝑗)

    (1 ≤ 𝑖 ≤ 𝑝), (1 ≤ 𝑗 ≤ 𝑞)  

 The entropy weight was calculated using: 𝜔𝑗 =
(1−𝐻𝑗)

∑
𝑞
𝑥=1 (1−𝐻𝑗)

  

 The equation mentioned above was used to find the weight. However, Zhou et al. [4] proposed 
the following refined formula with which to measure the weight:  

𝑤𝑗 =
∑𝑛

𝑗=1 𝐻𝑗+1−2×𝐻𝑗

∑
𝑞
𝑗=1

(∑
𝑞
𝑗=1

𝐻𝑦+1−2×𝐻𝑗)
 (1 ≤ 𝑦 ≤ 𝑞) (4) 

4.2 Ranking Alternatives Based on the Developed Algorithm 
A grey relational analysis (GRA) [11] is commonly used to analyze the ambiguity and 

incompleteness of a system model. It can produce discrete sequences with processing uncertainty, 
multi-variable inputs, and discrete data for correlation analysis. As a result, a GRA can be used to 
discuss the consistency and goal of an uncertain discrete sequence. One of the primary advantages 
of the grey systems theory is that it can produce good results with limited data and many variables. 
The grey theory is commonly used in industrial and technical decision-making. 

4.2.1 Criteria of developed algorithm 
The main strategy of this algorithm is to reduce the impact of various physical qualities and turn 

the attribute values of all alternatives into a comparable sequence. The mechanism generates a 
reference sequence based on those patterns, also known as the ideal option pattern or negative 
ideal target (NIT) sequence. This method can calculate the grey relational coefficient (GRC) between 
comparability sequences and the reference sequence. Finally, using these GRCs, the grey relational 
grade (GRG) here between a known segment and each such considered comparability sequence is 
completely determined. If a comparability sequence transformed with an alternative option has the 
maximum GRG with the reference sequence, it is the primary target sequence; otherwise, it is the 
critical ideal target sequence. Assuming the decision-making matrix has been normalized, as 
previously described, then the stages of the grey relational projection (GRP) technique will be 
completed as follows: 

4.3 Positive Ideal Target and Negative Ideal Target 
If a normalized PFN decision matrix has been determined, then the PFNs PIT and the 

corresponding PFNs NIT can be defined as follows concerning the definition of PIT: 𝑛 𝑝+=

(𝑛1
+, 𝑛2

+, … … … . , 𝑛𝑝
+), where, 𝑛𝑝

+ can be evaluated using: 

𝑛𝑗
+ = (max

𝑖⏟
⬚

𝜇𝑖𝑗(𝑥) min
𝑖⏟

⬚

(𝜐𝑖𝑗) min
𝑖⏟

⬚

(𝜋𝑖𝑗)) (5) 

the PFNs can also be evaluated using: 𝑛− = (𝑛1
−, 𝑛2

−, … … … . , 𝑛𝑞
−), where, each 𝑛𝑞

− can be 

calculated using the following relation: 

𝑛𝑞
+ = (min

𝑖⏟
⬚

𝜇𝑖𝑗(𝑥) max
𝑖⏟

⬚

(𝜐𝑖𝑗) max
𝑖⏟

⬚

(𝜋𝑖𝑗)) (6) 

Fuzzy PIT can also be defined as: 𝑛𝑗
+ = ([1,1]) and 𝑛𝑗

− = ([0,0]) 
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4.3.1 Calculating the GRC 
The GRC of each PIT and NIT alternative form can be calculated using the equations below. Each 

alternative GRC form of PIT is given as: 𝜛𝑖𝑗
+ =

𝑇++𝜑𝑊+

𝑑𝑖𝑗
+ +𝜑𝑃+ , where the normalized hamming distance is: 

𝐷𝑖𝑗
+ =

1

2
[|𝜇𝑖𝑗

2 − 𝜇𝑗
+| + |𝜐𝑖𝑗

2 − 𝜐𝑗
+| + |𝜋𝑖𝑗

2 − 𝜋𝑗
+|],  𝑇+ = min

𝑖⏟ min
𝑗⏟

𝑑𝑖𝑗
+ , 𝑊− = max

𝑖⏟ max
𝑗⏟

𝑑𝑖𝑗
+ , 𝜑 is the 

resolution coefficient, and its values form this range, 𝜑𝜀(0,1). 
So, the GRC of each alternative in the OIS is given as:  

𝜑𝑖𝑗
− =

𝑇−+𝜚𝑊−

𝑑𝑖𝑗
− +𝜑𝑃−  (7) 

where, the normalized hamming distance is: 𝐷𝑖𝑗
− =

1

2
[|𝜇𝑖𝑗

2 − 𝜇𝑗
−| + |𝜐𝑖𝑗

2 − 𝜐𝑗
−| + |𝜋𝑖𝑗

2 − 𝜋𝑗
−|], 

𝑇− = min
𝑖⏟ min

𝑗⏟
𝑑𝑖𝑗

− , 𝑊− = max
𝑖⏟ max

𝑗⏟
𝑑𝑖𝑗

− , 𝜑 is the resolution coefficient, and it value is form this 

range  𝜑𝜀(0,1) 
So, the GRC of each alternative in the PIS is given as:  

𝜑𝑖𝑗
− =

𝑇−+𝜑𝑊−

𝑑𝑖𝑗
− +𝜑𝑃−

 (8) 

4.3.2 Calculating the GRG 
 
The GRG of each PIT and NIT alternative form can be calculated using the equations below.  

𝜍𝑖
+ = ∑𝑞

𝑗=1 𝑤𝑗𝜑𝑖𝑗+ (9) 

𝜍𝑖
− = ∑𝑞

𝑗=1 𝑤𝑗𝜑𝑖𝑗−            (10) 

4.4.3 Ranking: 
The GRA ranking method involves selecting the alternative "greatest degree of grey relation" 

form of PIT and the "smallest degree of grey relation" form of PIT from a set of NIT options. 

4.3.4 Projection: 
The weight in the GRP was:  

𝑤𝑗 =
𝑤𝑗

2

√∑
𝑞
𝑗=1

𝑤𝑗
2
          (11) 

 The weight in the GRP technique for the alternative PIT and NIT was:  

℘𝑖
+ = ∑𝑞

𝑗 (𝑤𝑗 × 𝜍𝑖𝑗
+)          (12) 

℘𝑖
− = ∑𝑞

𝑗 (𝑤𝑗 × 𝜍𝑖𝑗
−)          (13) 

4.3.5 Estimating the similitude to PIT and rating the alternatives: 
The option under consideration may now be positioned based on the GPC projection coefficient 

of each alternative based on the PIT and NIT solutions. The greater the projected number on the 
PIT, and the closer to the NIT, the better will be the alternative, whereas on the contrary, the 
smaller the projection onto the PIT, and the farther away from the NIT, the better will be the 
alternative. The similitude estimation can be defined as follows: 

𝑅𝐶𝑖 =
𝜍𝑖

+

𝜍𝑖
+−𝜍𝑖

−             (14) 

 𝑅𝐶𝑖 =
∑

𝑞
𝑗 (𝑤𝑗×𝜍𝑖𝑗

+ )

∑
𝑞
𝑗

(𝑤𝑗+℘𝑖
−) ∑

𝑞
𝑗

(𝑤𝑗×𝜍𝑖𝑗
− )

                  (15) 
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5. Study Case  
Service levels in numerous businesses have risen in the context of the globalization of the 

economy. The national economy is expanding, and people’s needs are increasing, thus promoting 
the rapid expansion of tourism. As a result, they must anticipate future market trends and compete 
with cutting-edge, high-quality services. The key theme of inquiry was how to make good use of 
hotel management and customer consumer psychology to develop a realistic service quality 
evaluation system that is useful in practice to assist firms in enhancing their competitiveness in 
terms of the quality of service. 

With regard to MADM issues for service suppliers, four major international hotels were 
selected—namely, Emirates Palace, Rancho Valencia Resort Spa, The Westin Excelsior, and Burj Al 
Arab. Four criteria were used to determine the optimal service supplier: Good customer service, 
Location, Hygiene, and Quality of cuisine. 

The assumption of the alternatives 𝐴1, 𝐴2, 𝐴3, 𝐴4 would be in the form of the PFNs w.r.t four 
attributes, 𝑄1, 𝑄2, 𝑄3, 𝑄4, for the DM to be formed (see Table 2).  

 
   Table 2 
   Attributive values of the alternatives. 

  Alternative⇒ 𝑸𝟏 𝑸𝟐 𝑸𝟑 𝑸𝟒 

 𝐴1   (0.1,0.6)   (0.2,0.4)   (0.1,0.7)   (0.8,0.1)  
 𝐴2   (0.5,0.4)   (0.6,0.3)   (0.2,0.5)   (0.1,0.3)  
 𝐴3   (0.1,0.5)   (0.3,0.5)   (0.4,0.3)   (0.2,0.6)  
 𝐴4   (0.2,0.7)   (0.2,0.3)   (0.2,0.1)   (0.8,0.2)  

The computational steps of the application of the herein-proposed methodology for the 
problem at hand were as follows: 

𝑆tep I: 
The following matrix (see Table 3) was standardized using Equations 1, 2, and 3: 𝑁 = (�̃�𝑖𝑗)𝑚×𝑛  
 

        Table 3 
         Attributive values of the alternatives 

  Alternative⇒  𝑸𝟏   𝑸𝟐   𝑸𝟑   𝑸𝟒  

 𝐴1   (0,0.625)   (0.125,0.375)  (0,0.75)   (0.875,0)  
 𝐴2   (0.5,0.375)   (0.625,0.25)   (0.125,0.5)   (0,0.25)  
 𝐴3   (0,0.5)   (0.25,0.5)   (0.375,0.25)   (0.125,0.625)  
 𝐴4   (0.125,0.75)   (0.125,0.25)   (0.125,0)   (0.875,0.125)  

𝑆tep II: 
The notion of expected value arose, and it was defined as the central value of the interval. The 

expected value from the entropy weight was calculated using Equations 4, 5, and 6. 

𝐼𝑛
𝑝= [

0.145 0.045 0.1535 0.5545
0.166 0.2795 0.071 0.074
0.1301 0.03 0.12 0.087
0.092 0.016 0.065 0.5175

]   

The attribute weights were: 𝜒1 = 0.1556 , 𝜒2 = 0.2816 , 𝜒3 = 0.2876 , 𝜒4 = 0.2876  
𝑆tep III: 
As PIT maximizes the benefits criterion and minimizes the cost criterion while NIT minimizes the 

benefits criterion and maximizes the cost criterion of the PFNs, they were verified using Equations 7 
and 8 : 
𝜍𝑗

+ = [(0.5,0.625),   (0.25,0.375),   (0.125,0.75),   (0.125.0)]  
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𝜍𝑗
− = [(0,0.5),   (0.625,0.5),   (0,0.5),   (0.875,0.25)]  

Step IV:  
The GRC was verified to determine the correlation between the ideal and the actual values. The 

GRC for the PIT and the NIT were verified using Equations 9 and 10: 

(𝜍𝑖𝑗
+)4×4= [

0.2702 0.9677 0.769 0.118
0.289 0.227 0.243 0.61
0.197 0.465 0.166 0.1969
0.275 0.476 0.139 0.1147

]  

(𝜍𝑖𝑗
−)4×4= [

0.2845 0.099 0.281 0.102
0.133 0.145 0.225 0.1196
1 0.139 0.239 0.062
0.143 0.086 0.180 0.526

] 

Step V: 
After calculating the GRC, the weight of the GRP of the alternative 𝐴𝑖  on the PIT and NIT were 

calculated using Equations 11, 12, and 13.  
𝑃1

+ = 0.2945,    𝑃2
+ = 0.18154 ,    𝑃3

+ = 0.13564,    𝑃4
+ = 0.1142 

𝑃1
− = 0.08754,    𝑃2

− = 0.0818 ,    𝑃3
− = 0.114682 ,    𝑃3

+ = 0.13324 
StepVI: 

The relative closeness was calculated using equation  14. 
𝑅𝐶1 = 0.7709,    𝑅𝐶2 = 0.6893,   𝑅𝐶3 = 0.54203,    𝑅𝐶4 = 0.4616  

Step VII: 
The alternatives were ranked according to their estimated similitude to each PIT using 

equations 14 and 15: 𝑁4 > 𝑁3 > 𝑁2 > 𝑁1.  

6. Comparative Analysis  
Traditional fuzzy methods have been a staple in decision-making processes, especially where 

uncertainty is a significant factor. However, these methods are inherently limited by their linear 
constraints. These constraints often lead to less accurate and less flexible representations of 
uncertainty, compromising the quality of the decisions derived from these methods. Picture Fuzzy 
Numbers (PFNs) represent a significant advancement in this area. Unlike traditional fuzzy sets, PFNs 
incorporate three degrees of membership: positive, neutral, and negative. This additional 
granularity allows for a more detailed and nuanced representation of uncertainty, thus improving 
the accuracy and robustness of the decision-making process. 

In the realm of Multi-Attribute Decision Making (MADM), Grey Relational Analysis (GRA) and 
Grey Relational Projection (GRP) techniques stand out when compared to other MADM methods. 
One of the key strengths of GRA and GRP is their ability to handle incomplete and uncertain 
information effectively. Traditional MADM methods often require precise and complete data, 
which is not always available in real-world scenarios. GRA and GRP, however, are designed to work 
with the available information, no matter how incomplete or uncertain. Integrating PFNs with GRA 
and GRP techniques further enhances their capability to manage complex decision-making 
scenarios. Using PFNs, GRA and GRP can process and analyze data more flexibly and in detail, 
leading to more accurate and reliable decision outcomes. 

Weighting attributes also play a crucial role in the decision-making process. The entropy 
method offers a sophisticated approach to determining the importance of each attribute based on 
the variability of the data. Entropy, in this context, measures the degree of disorder or uncertainty 
in the data. Attributes that exhibit higher variability are considered more significant and are 
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assigned higher weights. This starkly contrasts the equal weighting method, which assumes that all 
attributes are equally important regardless of their actual impact on the decision. By systematically 
determining weights based on data variability, the entropy method ensures that the weighting 
reflects the true significance of each attribute, leading to more informed and balanced decision-
making. 

To elaborate further, traditional fuzzy methods typically handle uncertainty by assigning a single 
membership value to each element, which simplifies the uncertainty but can also lead to loss of 
critical information. PFNs overcome this limitation by allowing for a spectrum of membership 
values, simultaneously capturing the degrees of agreement, neutrality, and disagreement. This 
multidimensional approach to uncertainty provides a richer and more comprehensive view of the 
decision problem. 

GRA and GRP techniques, particularly when combined with PFNs, are adept at dealing with the 
complexities inherent in real-world decision-making scenarios. For example, when data may be 
sparse or imprecise, these methods can still derive meaningful insights by focusing on the relative 
relationships between different options rather than requiring absolute precision. This makes them 
particularly useful in environmental management, medical diagnostics, and any domain where data 
quality cannot be guaranteed. 

The entropy method’s ability to dynamically adjust attribute weights based on data variability 
adds another layer of sophistication to the decision-making process. Unlike the equal weighting 
method, which can oversimplify the importance of different attributes, the entropy method 
recognizes that not all attributes contribute equally to the decision outcome. By quantifying the 
inherent uncertainty and variability in the data, the entropy method ensures that the decision-
making process is grounded in the actual significance of the available information. 

7. Conclusions 
The information on the score values observed for Multi-Attribute Decision Making (MADM) 

issues is often inexplicit, vague, untrustworthy, and conflicting. To address this challenge, Picture 
Fuzzy Numbers (PFNs) have emerged as a valuable tool for gathering and processing this type of 
information during the MADM process. This article delved into the application of PFNs in evaluating 
MADM problems by scrutinizing rating values. 

The study began with a detailed description of the expected value, entropy, and Hamming 
distance within the context of the Grey Relational Analysis (GRA) technique for MADM using PFNs. 
Initially, the Positive Ideal Target (PIT) and Negative Ideal Target (NIT) were computed to establish 
benchmarks. This was followed by the computation of the Grey Relational Grade (GRG) between 
each option and the ideal alternative based on the PIT and NIT values. 

Subsequently, the relative relational degree was determined by evaluating the GRG relative to 
the PIT and the NIT simultaneously to achieve a comprehensive ranking of all the options. This 
method ensured a more balanced and nuanced assessment of the alternatives. 

Illustrative examples were provided to demonstrate the practicality and effectiveness of the 
proposed strategy. These examples highlighted how the technique could be applied in real-world 
scenarios, reinforcing its utility. Furthermore, the proposed method was compared with other 
existing approaches to establish its transparency and effectiveness in handling diverse decision-
making challenges within the PFN framework. 

The study results showed that the proposed technique is effective and versatile, making it 
suitable for various decision-making problems. It is recommended that this technique be extended 
to other domains. Potential applications include medical diagnostics, where precise and reliable 
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decision-making is crucial, and improving cleaner production processes in industries such as gold 
mining, where environmental and operational efficiency are key concerns. 

In conclusion, using PFNs in the MADM process provides a robust framework for addressing the 
inherent uncertainties and ambiguities in decision-making. By leveraging the expected value, 
entropy, and Hamming distance within the GRA technique and computing the GRG in relation to 
the PIT and NIT, this study has laid the groundwork for more transparent and effective decision-
making strategies. Future research should continue exploring and expanding this technique's 
applications, ensuring its benefits are realized across various fields and industries. 
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