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Following the liberalisation of the electricity sector and its transition to a
competitive market structure, price volatility has intensified, as electricity tariffs
are now formed through market-based pricing mechanisms. Electricity price time
series exhibit complex properties, including pronounced instability, strong non-
linearity, and substantial fluctuations. In response to these characteristics, this
study concentrates on the development of a day-ahead system marginal price
(SMP) forecasting framework based on an enhanced Elman Neural Network
(ENN). To improve the predictive capability of the proposed ENN, a modified
pelican optimisation algorithm is employed to optimise its parameters. For the
selection of short-term input variables, the Pearson correlation coefficient is
applied to identify the most relevant factors. In contrast, long-term input
variables are determined by incorporating the discrete Fréchet distance,
alongside seasonal attributes, day-type information, forecasted load, and
historical SMP values. A comprehensive dataset spanning fifteen years is used to
evaluate the effectiveness of the proposed model. The empirical results
demonstrate that the suggested approach achieves superior forecasting accuracy
compared with conventional SMP prediction methods, confirming its effectiveness
for electricity market price forecasting.

1. Introduction

The gradual transition from monopolistic electricity markets to competitive market structures,
together with the transfer of public-sector responsibilities to private entities, has progressively
altered the economic behaviour of firms operating within the electricity sector, despite enduring
structural differences across systems [1]. This transformation has introduced new operational
conditions and risk exposures for market participants, as competitive electricity markets
increasingly resemble other traded commodity markets [2; 5; 7]. Within this environment, firms
pursue strategies aimed at maximising revenue while simultaneously limiting costs and mitigating
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exposure to uncertainty. A central objective for suppliers operating in restructured electricity
markets is the effective management of financial risk, which primarily arises from price volatility
and fluctuations in demand volume [10].

Over the past decade, extensive regulatory reforms have substantially reshaped the
organisation and operation of electricity networks. These reforms have dismantled the traditional
vertically integrated structure of energy utilities, leading to a fundamental reconfiguration of their
operational and managerial frameworks. In jurisdictions where such reforms have been
implemented, electricity generation, transmission, and distribution activities have been fully
unbundled and assigned to separate entities. Unlike previous arrangements, in which a single
authority managed all operational stages, each component of the restructured electricity system
now functions independently according to its own objectives and operational characteristics [11;
13; 14; 17; 18]. Although these components remain technically interconnected, their economic
activities are governed by market mechanisms rather than central coordination, necessitating the
establishment of organised markets to align economic incentives.

The intensification of competition within electricity markets has made accurate electricity price
forecasting indispensable for all market participants. Precise price predictions enable utilities to
design effective supply strategies, optimise bilateral contractual arrangements, and reduce
exposure to financial risk [3]. At the same time, consumers depend on reliable cost forecasts to
guide consumption decisions and identify opportunities to minimise electricity-related
expenditures. As competitive electricity markets have evolved, the structural importance of price
indicators such as SMP has increased considerably [22; 24]. SMP constitutes a critical informational
signal for electricity producers and energy-related firms seeking to improve profitability in
competitive environments [6]. However, forecasting SMP remains particularly challenging, as
electricity is widely recognised as one of the most volatile commodities traded in modern markets.

SMP may vary rapidly, often on an hourly basis, in response to the continuous balancing of
electricity supply and demand. In addition, SMP is influenced by multiple external factors, including
fuel price dynamics, infrastructure development, and long-term contractual agreements between
suppliers and consumers. Consequently, the development of a robust and adaptable SMP
forecasting framework capable of capturing both short-term and long-term price dynamics is
essential. Within the organisation and management of the energy sector, SMP forecasting
represents a comprehensive and strategically significant process [25; 27; 34]. Over the past two
decades, numerous forecasting approaches have been proposed, reflecting diverse economic
perspectives and technical methodologies. In parallel, accurate load forecasting has become a
fundamental task in the planning of electricity distribution networks, as it supports investment
decision-making and facilitates efficient project scheduling [36].

Efficient operation of the electricity sector depends on meeting multiple performance criteria,
including system reliability and operational security [33]. The inherently volatile nature of electricity
demand requires operators to allocate sufficient generation and transmission capacity to ensure
supply stability, while aligning technical planning with financial evaluation to control operating
costs. The foundation of such analyses lies in forecasting accuracy, as errors directly affect the
financial performance of grid management and system control activities [8]. During operational
stages, heightened uncertainty or conservative system utilisation further amplifies sensitivity to
forecasting inaccuracies [9; 15]. Forecasting errors may result in inefficient operational decisions,
such as unnecessary energy purchases, suboptimal electricity sales, or the avoidance of unit
shutdowns associated with high start-up costs, all of which impose additional financial burdens [20;
32]. Historically, electricity price forecasting relied primarily on statistical analysis techniques;
however, these approaches have shown limitations in capturing the complex dynamics of
restructured electricity markets.
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In recent years, a wide range of advanced techniques has been introduced to improve SMP
forecasting performance. Among these, neural network-based methods have demonstrated strong
potential for reducing prediction errors and enhancing operational efficiency. Load forecasting
remains one of the most critical tasks in the operation and maintenance of electricity systems, as
improved accuracy directly supports more effective system planning. Neural network techniques
have gained increasing attention as predictive tools due to their strong capabilities in classification,
functional approximation, and complex pattern mapping [37]. A key advantage of these models lies
in their ability to learn intricate pricing behaviours that are difficult or computationally intensive to
identify using conventional analytical approaches [38].

Several studies have examined the application of advanced modelling techniques to SMP
forecasting. One study developed a day-ahead SMP prediction framework using artificial neural
networks combined with similarity-based information, demonstrating improved accuracy through
the application of k-fold cross-validation and long-term historical data [28]. Using fifteen years of
historical load and SMP data, the proposed method outperformed traditional forecasting
approaches. Another investigation applied nonlinear autoregressive exogenous models and
multilayer perceptron’s to SMP forecasting within the Korean electricity market, comparing results
with those obtained using Autoregressive Integrated Moving Average models across multiple
forecasting horizons [28]. The findings indicated that all approaches achieved relatively low
forecasting errors, with optimal performance dependent on model configuration and hidden node
selection.

Additional research evaluated machine learning techniques for day-ahead SMP forecasting
within the Italian electricity market [40]. Key explanatory variables included lagged SMP values and
cross-market price indicators. Results showed that training models on larger datasets improved
predictive accuracy, while sensitivity analysis revealed that modest data perturbations could
substantially increase forecasting error metrics. Long-term SMP forecasting has also been addressed
using error correction models that incorporate fuel price information [31]. These approaches
demonstrated strong out-of-sample performance, particularly when accounting for long-run
equilibrium relationships between SMP and natural gas prices. Furthermore, the operation of Smart
Microgrids under carbon taxation and environmental policy constraints has been investigated,
showing that systems integrating Distributed Energy Resources (DER) and Renewable Energy
Sources (RES) can simultaneously reduce CO2 emissions and operational costs while maintaining
reliable performance, assuming grid connectivity and accounting for emissions from imported
electricity [4].

Building on these findings, the present research proposes a day-ahead SMP forecasting
framework that integrates both short-term and long-term statistical information. Long-term
historical data are incorporated to enhance predictive accuracy, leading to the classification of input
parameters into short-term type input variables (STIV) and long-term type input variables (LTIV).
STIV are selected using Pearson correlation analysis, while LTIV incorporate a season and day
indicator (SDI) derived from discrete Fréchet distance analysis, which captures hourly SMP pattern
similarities across different day types. By combining recent and historical information, the proposed
framework constructs a comprehensive input set for SMP prediction. The final forecasting model is
developed through the integration of a modified ENN with an enhanced pelican optimisation
algorithm, which has demonstrated strong capability in identifying complex patterns when handling
a large number of input parameters.

2. System Definition

SMP is determined by the interaction between electricity demand and generation costs.
Consequently, it reflects the balance between economic dispatch decisions and the anticipated level
of electricity demand. Electricity generation is scheduled to satisfy forecasted demand at the
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minimum possible cost, and SMP is calculated based on the highest marginal generation cost among
the dispatched power units [16; 19]. Under this mechanism, energy service providers prioritise
generation bids with the lowest production costs, and dispatch continues incrementally in
ascending order of generation cost until the forecasted demand is fully satisfied. The dominant
component of generation cost is associated with the procurement of primary energy resources.
Accordingly, SMP is strongly influenced by the cost of acquiring these energy inputs, which exhibits
considerable temporal variability [35]. This study examines the evolution of SMP behaviour and
develops a forecasting framework using historical data collected in South Korea over the period
from 2001 to 2016. The analysed data reveal a dynamic pattern characterised by increasing
electricity demand and persistent fluctuations in primary energy prices over time. These long-term
variations indicate that short-term forecasting approaches alone are insufficient for accurate day-
ahead SMP prediction, as they fail to capture underlying long-term price movements. Therefore, to
effectively extract the latent information embedded within historical SMP patterns, it is essential to
analyse both long-term and short-term data simultaneously.

2.1. Analysis of Short-Term Historical SMP Data

Short-term historical data consist of information associated with the prediction time and
encompass hourly observations extending back to the previous week. These data are categorised
into two groups, namely hourly-based variables and daily-based variables, both defined at each
hour of analysis. Hourly-based data include observations from the hour immediately preceding the
forecasted time and extend backward over the previous twenty-three hours, for example from
Py,d,t1 to Py,d,t23. In contrast, daily-based data incorporate observations recorded at the same
hour of the forecasted time for each of the preceding seven days, for example from Py,d1,t to
Py,d7,t. To determine the most relevant candidates for short-term input variables, the Pearson
correlation coefficient (PCC) is employed as the selection criterion. PCC is utilised to quantify the
strength of the linear relationship between potential input variables and the target output, thereby
enabling the identification of variables with the highest predictive relevance. The technical
formulation of PCC is presented as follows.

m n X (BX™Y) = (EX™) X (ZY) 1

JExEom2) - Eamn) x (nx 52 - (2r2)

Where, n describes data number, V7. stands for the input variable number m's correlation
coefficient, X™ describes the input variable number m, and Y signifies the output. Fig. (1) illustrates
the results obtained from the Pearson Correlation Coefficient analysis conducted on both an hourly

and daily basis.
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Fig. 1: Findings of Pearson Correlation Coefficient at Every Hour and Every Day Basis (A) Up to the Preceding 24
h, and (B) Up to the Preceding Week
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Based on the assessed significance of the correlation coefficients, the final selection of STIV is
conducted from the set of candidate input variables. The statistical relevance of each correlation
coefficient is examined through the application of a t-test, which is used to evaluate the
corresponding null hypothesis regarding the significance of the observed correlation. As a result,
the STIVs provide the previous hour's short-term type input variables (P, 4:—1), the same hour of
the previous day (P, 4_4,), and the identical hour of the prior week (P, 4_7 ). The forecasted load
also exerts a notable influence on SMP. The Pearson correlation coefficient was calculated for the
year 2016 using one year of historical data, resulting in a value of 0.53, which indicates a
moderately positive relationship between the predicted load and SMP. As a result, the predicted
load (L 4.) is added as an input variable. As a result, the predicted load’s historical data at the
same time as the historical system marginal price are included and designated as Ly g -1, Ly a—1,
and L, 4_7, that define the predicted load at the preceding time, the predicting load at the same
time on previous day, and predicted load at the same time in preceding week.

2.2. Analysis of Long-Term Historical SMP Data

Data collected over the same periods in previous years are regarded as long-term historical
data. To assemble an extended dataset for SMP, fifteen years of records, spanning from 1 January
2001 to 31 December 2016, were analysed. This historical information serves two primary purposes.
The first purpose is to incorporate the long-term fluctuation patterns of SMP when constructing
forecasting models. Fig. (2) depicts the variations in SMP trends over the fifteen-year period.
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Fig. 2: The Trend Varies Over a Period of 15 Years in Korea

As illustrated in Fig. (2), the daily average SMP in Korea exhibits temporal variation driven by
changes in electricity demand and fluctuations in the cost of primary energy procurement. During
the initial five years, SMP values remain relatively low and stable. Beginning in 2006, a linear
increase is observed, followed by a sharp decline in 2009, after which SMP rises rapidly again in
2010. The values remain steady until 2012, with a slight upward trend towards the end of that year,
and subsequently show a general tendency to decrease. Consequently, when constructing
forecasting models, long-term historical data are regarded as capturing the underlying
developmental trends of SMP. The second purpose of analysing long-term historical data is to
extract specific SMP patterns for selected days. Examination of fifteen years of historical records
reveals that certain days exhibit distinctive behaviour. Fig. (3) presents the days in 2016 that display
anomalous SMP patterns compared with typical days.
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Fig. 3: SMP Hourly Pattern from January 1 to June 30, 2016
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The days exhibiting distinctive SMP patterns are indicated by black circles. The limited
availability of data for such atypical days presents challenges in constructing accurate forecasting
models, which may reduce predictive performance. Therefore, incorporating long-term historical
data provides additional insights into these uncommon patterns. Accordingly, both SMP and
forecasted load from previous years are included as components of the LTIV corresponding to the
same forecasted time. P,_1 4¢, Ly—1,4t) Py-2.a6) Ly—24¢s -+ Py-154t, Ly-154¢ are the variables'
notational units.

3. Fréchet Distance

In some cases, historical data from earlier years within the long-term dataset may not exhibit
patterns comparable to the forecasted day, which can reduce the accuracy of predictions. To
address this, only historical days that demonstrate similarity to the forecasted day are utilised as
input variables in the proposed method, effectively serving as reference days. Following the
methodology in [28], the Fréchet distance is employed to quantify the similarity between days. This
measure evaluates the degree of similarity between two curves by considering both the shapes of
the curves and the spatial positions of points along them. Unlike the conventional Euclidean norm,
the Fréchet distance provides a more suitable metric for comparing SMP patterns across different
days. It is determined how much the separate Fréchet distance between curves P and curves Q

(DCI;}Q) is as follows [12]:

DCI;}Q = min(max d (p;, 4x)) (2)
(3)
dip,q) = llp —qll =

Where, p; and gy, represent, in turn, the jt" and k" discrete points of curves P and Q that may
be obtained via the Fourier transformation. d(p, q) signifies the symbols represents the separation
between p and q, which have the coordinates p; and q;.

The calculated discrete Fréchet distances are categorised into four groups, yielding four
principal hourly SMP patterns. These patterns are subsequently utilised in the development of a
dedicated forecasting model. Furthermore, the identified patterns are generalised into a set of
reference criteria to compute the Fréchet distance for the forecasted day. The generalisation
procedure takes into account historical Fréchet distances, seasonal effects, and day-type
characteristics, including holidays and working days. The following section outlines the essential
assumptions underlying the Fréchet distance calculation:

Holiday in Spring Season

Dy €[0.2,0.3] (4)
Holiday in Other Season

Dgf € [0.3,0.4] (5)
Lunar New Year and Thanksgiving Day

Dgf € [0,0.1] (6)
In Other Days

Dyr > 0.4 (7)

The challenge of discrepancies between the forecast day and reference days can be addressed
through the application of the Fréchet distance. Each day is assigned a Fréchet distance value, and
the selection of reference SMP data from historical records is adjusted according to the Fréchet
distance of the forecasted day. If the Fréchet distance of a candidate reference day differs from that
of the predicted day, the reference is shifted to an earlier or later day until alignment is achieved
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[39]. This adjustment process continues iteratively until the Fréchet distance of the reference day
matches that of the forecast day.

The algorithm finds the nearby earlier or next day that has an Fréchet distance comparable to
that of the forecast day, for instance, if it’s supposed that there is a difference between the Fréchet
distance of the forecast day and the Fréchet distance of the historical data (for instance, Dy (y —
1,d,t) =2 and Ddf(y, d,t) =1). So, the modified long-term type input variable are

14,60 Py—2,4,tr ++» Py—15,4¢- The equivalent predicted load for the considered points is defined as
Y-1a.6 Ly-2at -+ L_154,- The pseudocode outlining the steps of this methodology is presented
as follows:
Algorithm 1: Pseudocode of the Fréchet Distance Tuning for Choosing Input Parameters

Start

Choose STIPs (short-term input parameters),
including: Py g¢-1, Py.a-1,6 Pya-7.6 Lyats Lyat-1Lya-16 Lya-7¢

Choose LTIPs (long-term input parameters),
including: Py_1 g ¢, «e- - yPy_1sa6 Ly—1,d, e - Ly 15,41

IF, SDI of LTIP is equal to SDI of predict Day:

Choose Updated LTIP, including:

PUy—l,d,t! ...... ) PUy_15,d,t, LUy—l,d,tl ...... ) LUy—lS,d,t

Else:

Discover the nearest SDI-based LTIP:
(PYy_iac = Py-iazioLy-iae = Ly-iaF1t)
End if

Train the data

END

4. Elman Neural Networks

In this section, SMP forecasting is conducted using the ENN. The advent of artificial neural
networks has introduced a novel paradigm in applied science and engineering, enabling solutions to
problems that were previously difficult to address using conventional methods. Tasks such as
pattern recognition, data clustering, time series forecasting, electricity price prediction, satellite
navigation, routing, and robotic control, which traditionally posed significant analytical challenges,
can now be approached with increased accuracy and efficiency through neural network
methodologies. Artificial neural networks are parallel information-processing systems inspired by
the structure and function of biological neural networks. The primary objective in developing such
systems is to construct a mathematical model that emulates human learning and reasoning through
network architectures capable of rapid information processing. Neural networks consist of
numerous fundamental processing units, referred to as neurons, which are interconnected via
synaptic links associated with adjustable weight parameters. These adaptive weights encode the
knowledge acquired by the network, which is essential for performing specific tasks. Neural
networks have been widely applied across engineering domains, including electricity price
forecasting. The Elman network is a type of multi-layer neural network. While Markov models
provide a robust analytical framework, the ENN incorporates principles inspired by Markov
processes, representing this concept within a hidden layer. The network architecture comprises four
primary layers: the input layer, context layer, hidden layer, and output layer. Fig. (4) presents a
simplified schematic of the ENN structure.
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Output layer
Inpyt layer

Hidden layer

Context layer

| L&

Fig. 4. Simple Arrangement of the ElIman Neural Network

The ENN illustrated in Fig. (4) consists of a single hidden layer. Outputs from the hidden-layer
neurons are fed back into the network through time-delayed units, known as context units, which
functionally act as additional input nodes for the network. The network’s output is therefore a non-
linear transformation that depends both on the current external inputs and on the hidden-layer
activations from the preceding timestep. Recurrent connections between the hidden layer and
context units possess fixed weight coefficients, allowing the network to process temporal
information and capture dependencies across observed sequences. As a result, training the ENN s
generally less complex than training a conventional feedforward network with standard error
backpropagation. While it shares many operational similarities with traditional backpropagation
networks, the ENN benefits from the one-step-ahead feedback mechanism, which accelerates the
learning process. Mathematically, the input layer of the ENN is expressed as follows:

;1) = e; (D), (8)

Where, | defines the iteration number, andi = 1,2,...,n.

Subsequently, the output of the hidden layer, denoted as layer k, in the ENN is represented by
the following equation:

N n
v = ) ol WX + ) 0k Ou)
=1 i=1

k=12,...,N

Where, x; (1) labels the transmitted data from the contextual node k, w,lq-(l) designates
number j and number j weights for the hidden layers.

Consequently, for the input layer (I), the hidden layer (k) weight has been attained by w?;(1).
Consequently, the integration of the hidden layer output into the context layer is performed
according to the following procedure:

(9)

Wi (D) = fo(0r (D)) (10)
Where,

o (D) (11)

) = v )]

represents the normalised value of the hidden layer output.
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The context layer is mathematically defined as follows:
Ce(D) = BC(I=1) + Wi (1= 1), (12)
k=12,...,N
Where, W, signifies the self-connected feedback gain in the range [0, 1] [36].
Finally, the output of the network is computed using the following equation:
al (13)
1o (D = Y W OW(D,
k=1
o=12,...,n
Where, wf;k represent the connection weight by the layer k into layer O.
W,{', Wy, and W) describe the weight of input matrix, context matrix, and output matrix,
respectively. The input and output layers dimension are n, that is:

[xl(w] _ [x%(w,x;(t), @) (14)
y(t) yl(t),yz(t),...,yn(t)

Although, the context layer dimension is m.

A novel approach proposed in [38] was employed to modify the ENN, enhancing both learning

accuracy and convergence, as illustrated in Fig. (5).

Initializing the learning rate value p = ¢
In the [ iteration:

if/<2:

u = defaultvalue;

endift >=3 && 1.02e(/- 1) > e(/):

_a+p!

~ “exp(1)

else

u = defaultvalue
end

end

Weights updating;

evaluate e(t);

if the stop criteria are reached:
break;

else

continue

Fig. 5: Improved Elman Neural Network

Where, t signifies the present epoch, c describes a constant, and u stands for the learning rate.
In this research, the weights of the modified ENN are optimised using an enhanced variant of the
Pelican Optimization Algorithm.

5. Improved Pelican Optimization Algorithm
The population-based Pelican Optimization Algorithm and its associated mathematical
formulation are initially introduced.

5.1. Motivation and Pelican Behaviour throughout Hunting
Pelicans possess a large pouch in their pharynx, which they use to capture and ingest their prey.
These birds are highly social and typically form groups that can number in the hundreds. While
turtles, frogs, and crustaceans are occasionally consumed, fish constitute the primary component of
824
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their diet. Pelicans generally hunt cooperatively, coordinating their movements to improve
efficiency. During hunting, a pelican identifies its target and dives from a considerable height,
typically between 10 and 20 metres. Certain pelican variants, however, approach their prey from
lower altitudes. Upon reaching the water, they extend their wings parallel to the surface, creating a
disturbance that drives fish into shallower areas, thereby facilitating capture. Before swallowing
their prey, pelicans tilt their heads downward to expel excess water ingested during the hunt. The
structured hunting strategies of pelicans demonstrate their proficiency as predators. These
behavioural mechanisms inspired the development of the proposed algorithm, which incorporates
analogous strategies to enhance optimisation performance.

5.2. The Suggested POA Mathematical Model

Within this computational model, each pelican agent represents a candidate solution within the
population of the algorithm. The optimisation variables are defined according to their spatial
positions within the solution space. The population is initially generated using stochastic methods
while adhering to predetermined boundary conditions, including upper and lower limits.

Zi,j = lj + rand. (u] - l]),l = 1,2, ...,N, (15)
j=12,..,m,
Where, z;; indicates the significance of the jt" variable determined by the i** individual

solution, N represents the number of population candidate, m indicates the numeral of problem
variables, rand defines a random amount between 0 and 1, lj and u; describe the jth lower and
upper bound of decision variables.

In the proposed POA, the population matrix presented below characterises the members of the
pelican population. Each row of the matrix corresponds to an individual solution, while the columns
represent the respective values of the decision variables for the optimisation problem.

Zl Zl,l Zl’j lem (16)
/= Zi = Zi.l Zi,j Zi,m
ZN Vs ZN,l oo ZNJ A ZN'm N

Where Z and Z; represent the pelicans population matrix and the it" pelican.
Based on the individual solutions defined above, the fitness function for the given problem can
be evaluated. The resulting fitness function vector, presented below, indicates the computed fitness

Fy F(Z1) (17)

F = Fi = F(Zl)

Fy Nx1 F(ZN) Nx1
values for each solution.

Where the fitness function amount of the i individual solution is denoted by F;.

The individual solution vectors are iteratively updated by mimicking the offensive and prey-
capturing behaviours of pelicans. The algorithm’s simulation consists of two principal stages:
exploration, which models movement toward the prey, and exploitation, which replicates winging
actions along the water surface to maximise capture efficiency.

Step 1: Exploration (Movement in the Direction of the Prey)
Once the hunting location is established by the pelican, it moves toward this target. In the
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algorithm, this movement simulates the search within the solution space and represents the
exploration capability of the POA in identifying diverse regions within that space. It is important to
note that in the POA, the hunting locations are generated randomly within the solution domain,
which enhances the algorithm’s exploratory performance during the search for optimal solutions.
The mathematical formulation corresponding to the process described above is as follows:
P {Zi,j + rand. (p] - I'Zi,j)’ Fp < Fi (18)
Ly z;j +rand.(z;; — pj), else

Where ijl. denotes the novel place of the it" pelican in thejth dimension according to this step,

I'is a random value the same as 2 or 1, which is chosen in any iteration and for any individual, p;
represents the place of prey in the jth dimension, and F, indicates its cost function amount. When
the parameter | is set to two, it induces greater movement of a population member, enabling the
search of previously unexplored regions of the solution space. The precision of the solution space
analysis is influenced by the chosen value of I. Updates to the pelican’s position are accepted only if
they lead to an improvement in the fitness function, ensuring that the algorithm avoids non-optimal
regions. The corresponding governing equations for this procedure are formulated as follows:

Z; = {Zfl'Fipl <F; (19)

Z;, else,

Where Zfl defines the novel situation of the it" pelican and Fip1 indicates its fitness function
value on the basis of step 1.

Step 2: Exploitation (Winging on the Plane of the Water)

When the pelican descends to the water surface and extends its wings, the fish are driven
upward and captured. By simulating this hunting behaviour, pelicans can seize a large number of
fish efficiently. In the context of the POA, this mechanism enables convergence toward superior
solutions within the search space, thereby enhancing the algorithm’s local search capability and
exploitation efficiency. From a mathematical perspective, achieving convergence toward an optimal
solution requires a structured evaluation of the neighbourhood surrounding the pelican’s position.
This behaviour is represented by the following equation:

P, t (20)
z;; =2z;+R. <1 - ?) .(2.rand — 1).z;,
Where Zf]"f defines the novel situation of the i*" pelican in the j* dimension according to this

step, R is a constant value the same as 0.2, R. (1 — %) indicates the neighborhood radius of z; ;, t is

the iteration numerator, T represents the max number of iteration. The ability to exploitation of
POA in order to approach the universally convergent solution is influenced by the hyperparameter

"R. (1 - %)". The magnitude of this coefficient diminishes as the algorithm progresses, resulting in

a gradual reduction of the neighbourhood radius. In essence, this coefficient enables a finer-
resolution examination of the local topology surrounding each candidate solution. Consequently,
the POA is able to converge toward solutions that are closer to the global, or even the absolute
global, optimum.

The following equation formalises the update mechanism used to accept or reject a pelican’s
new position:
Zi= {Zfz’Fipz <F; (21)

Z;, else,
Where Zfz represents the novel situation of the i*" pelican and FiP2 indicates its fitness function
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value on the basis of step 2.

Repetition of Steps, Pseudo-Code: Once all individual members have been updated following
the procedures outlined above, the elite solution is iteratively refined by considering both the newly
generated positions of the population members and their associated fitness values. The algorithmic
steps are then repeated according to the governing equations described previously. Ultimately, the
best solution obtained over the course of the iterations is presented as a quasi-optimal solution to
the given problem. The corresponding POA pseudo-code is provided below.

Algorithm 2: Pseudocode of POA

Start POA.

Enter the information of the optimization problem.

Specify the POA individuals size (N) and the numeral of iteration.
Initialization of the location of pelicans and compute the fitness function.

Fort =1:T.

Create the location of the prey randomly.

ForI = 1:N.

Step 1: exploration (movement in the direction of the prey).
Forj =1:m.

Compute novel situation of the j* dimension utilizing Eq. (4).
End.

Renew the i*" individuals member utilizing Eq. (5).

Step 2: exploitation (winging on the plane of the water).
Forj = 1:m.

Compute novel situation of the j* dimension utilizing Eq. (6).
End.

Renew the i*" individuals member utilizing Eq. (7).

End.

Renew finest individual solution.

End.

Output finest solution achieved by POA.

End POA.

5.3. Improved Pelican Optimization Algorithm (IPOA)

Certain limitations of the conventional Pelican Optimization Algorithm, including the random
replacement of the least fit pelicans and insufficient exploitation, can result in slow convergence.
The original POA has been critically examined, and various enhancements have been proposed to
address these shortcomings. In this study, two specific modifications are introduced to improve the
efficiency of the POA in overcoming these issues [29]. The first modification incorporates the Lévy
flight mechanism. Lévy flight, widely adopted in optimisation algorithms, is founded on principles of
stochastic movement and is modelled using random walk theory. The Lévy flight (F;) should be
formulated by the following equation:

F(a) = 1/ (22)
a = A/|B|**, A,B~N(0,0?) (23)
2 (24)

5 {sin (mt/2) ['1+71) }T
= X
¢ 202 T I+ 1)/2)
Where, 7 signifies the constant of the Lévy flight and is set 1.5 Li et al. [23],  represents the size
of step, and I'(. ) defines the Gamma function.
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Accordingly, the steps of the enhanced mechanism can be expressed using the following
equation:

Py {Zi,j + F(0). (p; — 1. 2:), E, <F (25)
2 z;j + Fi(0). (Zi’j — pj), else

The second enhancement involves incorporating a chaos mechanism into the algorithm. The
chaos mechanism is typically represented by the following formulation:
cM),, = £(cm)) (26)
j=12,..,N

Where, f(CM]) defines generator function, N signifies the map [30].

By analysing various chaotic functions, this study selected the sinusoidal chaotic map as a
representative chaos mechanism. This method employs pseudo-random numbers rather than
purely random ones, enhancing the algorithm’s initial convergence and lowering computational
complexity. Consequently, the motion of the population members is adjusted according to this
modification. Under the revised formulation, the generation of population individuals is determined
as follows:

A (zl-,j)z sin(nzi,]-) (27)

Where, z, j = rand(.).

Algorithm Authorization

The performance of the proposed improved Pelican Optimization Algorithm must be evaluated
using a set of widely recognised benchmark functions to demonstrate its effectiveness. To this end,
the enhanced POA is applied to several standard test functions, including Levi No. 03, Six-hump
Camel, Leon, and Schwefel functions, in order to validate its optimisation capability. The
mathematical definitions of these functions are as follows:

Six-Hump Camel: This benchmark function features six local minima, of which two correspond to
the global optima. The parameter space is restricted by x; = [-3, 3] and x, = [-2, 2]. The function is
analysed using the following relation:

4

z 28
fi(2) = (4—2.1Z12+?1>Z12+21XZZ+(—4+4ZZZ)XZ22 (28)

Levi No. 03: This benchmark function is highly non-convex. The Levi No. 03 function, defined
over a two-dimensional solution space, represents a multimodal optimisation problem. The domain
for all variables is limited to the interval [-10, 10]. The corresponding objective function for Levi No.
03 is expressed using the following equation:

fo(z) = sin?(3mzy) + (z; — D?(1 + sin?(3mz,)) + (2, — 1)?(1 + sin?(2nz,)) (29)

Schweffel: The Schwefel function is a challenging benchmark characterised by multiple local
minima. Its search domain is typically represented as an n-dimensional hypercube, with each
variable ranging from -500 to 500, defined as follows:

da
f2(z) = 418.9829d - " 7;sin (I

The Leon Function: This benchmark function is continuous, non-convex, and defined over a
two-dimensional solution space. The Leon function is recognised as relatively complex and has been
extensively used in optimisation studies. It is defined over the interval [0, 10], and its fitness value is
calculated using the following equation:

fa(2) = 100(z; — z7)* + (1 — 21)? (31)

(30)
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The results produced by the proposed method are subsequently validated through comparison
with two established optimisation techniques: the Multi-Verse Optimizer (MVO) [42] and the Owl
Search Algorithm (OSA) [43]. Table 1 presents the parameter settings employed for these
optimisation algorithms.

Table 1

Set Parameters of the Optimization Algorithms

Algorithm Parameter Value

Multi-Verse Optimizer (MVO) Mirjalili et al. WE P, 0.2

[26] WEPBpax 1
Coefficient (P) 6

Owl Search Algorithm (OSA) Jain et al.Tpq4 18

[21] |P| 10
Acciow 0.2
AcCpign 1

For all algorithms, the population size and the maximum number of iterations were set to 50
and 200, respectively, to ensure reliability and comparability of the results. The simulations were
conducted on a system with 8.0 GB of memory, an Intel Core i7 CPU at 2.00 GHz, and a 64-bit
operating system. The performance of the proposed improved Pelican Optimization Algorithm,
compared with other optimizers, is presented in Table 2, based on evaluation metrics including
minimum, maximum, mean, and standard deviation (SD) values. Table 2 indicates that the
enhanced Pelican Optimization Algorithm (POA) surpasses other comparable optimisation methods
in terms of solution accuracy for the selected benchmark functions, successfully identifying optimal
solutions even with a limited population size. The algorithm’s robustness is further demonstrated by
its consistently lower SD values compared with alternative approaches. These findings validate the
effectiveness of the proposed method in tackling complex optimisation problems. In this study, the
improved POA is applied to achieve optimal energy management and component sizing within
hybrid systems.

Table 2

Review of the Suggested Optimization Method's Objective Function Analysis

Algorithm Index F1 F2 F3 F4

MVO Mirjaliliet Min 17.5968e-8 9.1183 7.8831 5.4857e-4

al. [26] Max 15.6728e-3 19.2731 11.8992 6.6567e-2
AVG 22.6527-6 14.8263 9.8665 7.4755e-3
SD 13.5488-6 12.5591 7.2387 6.3364e-3

OSA Jain et al. Min 15.1587e-13 7.5884 3.8437e-3 4.5683-5

[21] Max 26.6784-9 16.4894 4.5361e-1 6.2154e-3
AVG 21.0864-11 11.7572 3.7351-2 5.5938e-4
SD 20.5922-11 12.4435 2.8495e-2 4.1882e-4
Min 11.5491e-18 5.5878 4.4740-5 5.1688-6

IPOA Max 19.6687-14 11.2886 3.2788 8.0735e-4
AVG 16.4782-16 9.8237 2.8457 7.8848e-5
SD 15.6766-16 8.5262 3.4351e-3 6.1941e-5

6. Results and Discussion

The simulation environment for this study was implemented using MATLAB version 2017b on a
notebook equipped with an AMD A4 3600 CPU, 8 GB of RAM, and a 64-bit Windows 10 operating
system. For all algorithms, the number of iterations and population size were set to 200 and 40,
respectively. To ensure reliability, each approach was executed independently 30 times. The
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simulation, following the methodology described in the preceding sections, was conducted to
predict the day-ahead SMP for 2017. The accuracy of the proposed model was evaluated against a
standard Artificial Neural Network (ANN) employed as a reference model. The performance of the
SMP forecasting model was assessed using the Mean Absolute Percentage Error (MAPE), which
measures the effectiveness by computing the percentage difference between the predicted and
actual SMP values. Mathematically, MAPE is expressed as follows:
1 N Pjobserved _ PjprediCt (32)
fuape(%) = N pobserved x 100
j=1 J

Table 3 presents the overall average MAPE of the proposed model in predicting the SMP for
2017. Additionally, the table provides the average MAPE values for all Fréchet distances (FD)
throughout 2017. As shown in Table 3, the proposed model (ANN incorporating Fréchet distance)
achieves a more accurate forecast, with a total average MAPE of 3.91%, compared to 5.45% for the
conventional ANN-based model. The proposed approach also demonstrates enhanced performance
in predicting days characterised by different Fréchet distances. For further validation, the improved
method (ENN/IPOA) is compared against the modified ENN without optimization (ENN). The
simulation results are analysed in detail using temporal SMP curves, where representative daily
profiles are selected according to the Fréchet distance classification criteria.

Table 3

The Overall Mean Absolute Percentage Error Average of the Model is used to Predict the System Marginal
Pricein 2017

Entire Mean MAPE Mean MAPE FD=1 Mean MAPE FD =2 Mean MAPE FD =3 Mean MAPE FD =4

Conventional ENN  5.45% 26.36% 6.61% 6.94% 4.31%
ENN/IPOA 3.91% 17.55% 5.12% 5.56% 2.87%
Total Days 365 8 32 83 246

6.1. Day Prediction When Fréchet Distance is 1
The Fréchet distance for Korea’s major holidays, specifically Lunar New Year and Thanksgiving
Day, is equal to 1. In 2017, these holidays fell on October 4—6 for Thanksgiving Day and January 27—
30 for Lunar New Year. The predicted SMP for January 28, 2017, is illustrated in Fig. (6). For days
with a Fréchet distance of 1, the proposed ENN/IPOA model achieves a daily MAPE of 13.65%,
whereas the conventional ENN model records a daily MAPE of 16.44%. This comparison
demonstrates that the suggested model provides more accurate SMP predictions than the standard

ENN on these significant holiday periods.
100 T T T T T T T T T T

— Observed

S
I
|

ENN/IPOA

3
I

S
3
T

2
I

system marginal price (KRW/KWh)
i 7
|

10:00 ANI1:00 AM2:00 PMIL:00 PM2:00 PM3:00 PM4:00 PM5:00 PM6:00 PM7:00 PM8:00 PM9:00 PM10:00 PM1:00 PM2:00 AM:00 AM 2: AM 3:00 AM4:00 AM5:00 AM6:00 AM7:00 AM8:00 AM9:00 AM
Time

Fig. 6: Outcome of the System Marginal Price Predicting on January 28
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6.2. Day Prediction When Fréchet Distance is 2

Certain holidays and seasonal events, including Labour Day (May 1), Independence Movement
Day (March 1), Children’s Day (May 5), and Buddha’s Birthday (observed May 3), are assigned a FD
of 2 in the analysis. Figure 7 illustrates the predicted SMP profile for March 1 as a representative
example. As shown in Fig. (7), the conventional ENN model achieves a MAPE of 8.16%, whereas the

proposed ENN/IPOA model attains a significantly lower MAPE of 1.96%, demonstrating superior
accuracy in SMP prediction.

100 | | I I

45|~ Observed i
----- ENN
90| ENN/IPOA 2

system marginal price (KRW/KWh)

| | l | | | | | | | | | | | | | | | | | | | | |
10:00 AM1:00 AM 2:00 PM1:00 PM 2:00 PM3:00 PM4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM9:00 PM10:00 PM 1:00 PM2:00 AMI:00 AM2:00 AM3:00 AM4:00 AM5:00 AM6:00 AM7:00 AMS8:00 AM9:00 AM

Time
Fig. 7: Outcome of the System Marginal Price Predicting for March 1

6.3. Day Prediction When Fréchet Distance is 3

Days with a Fréchet distance (FD) of 3 include holidays and Sundays occurring outside of the
spring season, excluding Lunar New Year and Thanksgiving Day. This FD category encompasses
August 15 (Liberation Day), December 25 (Christmas Day), and January 1 (New Year’s Day). Figure 8
presents the predicted SMP outcomes for August 15. The conventional ENN model forecasts SMP
with a MAPE of 6.16%, while the proposed ENN/IPOA model achieves a lower MAPE of 3.86%,
indicating improved prediction accuracy.
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Fig. 8: Outcomes of the System Marginal Price Prediction for August 15

6.4. Day Prediction When Fréchet Distance is 4
Days not classified under the previous FD categories are considered to have a FD of 4. Figure 9
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illustrates the predicted SMP for January 19, which serves as a representative example of typical
days. The conventional ENN model predicts SMP with a MAPE of 2.46%, whereas the proposed
ENN/IPOA model attains a lower MAPE of 1.28%, demonstrating enhanced forecasting precision.
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Fig. 9: Outcomes of the System Marginal Price Prediction for January 19

7. Conclusion

Electric energy plays a vital role in enhancing national prosperity and driving economic
development. It differs from other energy carriers due to its unique characteristics, namely the
requirement for real-time balance between supply and demand and the impracticality of storing it
in large quantities. Ensuring a reliable electricity supply remains a primary objective for sector
managers, given the significant economic losses associated with service interruptions. Historically,
the substantial investments required for electricity generation, transmission, and distribution
justified the establishment of government monopolies in the industry. In such monopoly markets,
electricity pricing is determined according to government social and industrial policies, taking into
account energy costs, productivity, and the structure and type of production. In this study, a novel
approach based on a modified ENN was proposed for day-ahead SMP forecasting using long-term
historical data. An enhanced version of the POA was employed to optimise the modified ENN. The
discrete Fréchet distance was applied to long-term input variables, which were further augmented
with temporal covariates, including seasonal indicators (summer/winter) and categorical day-type
classifiers (weekday/holiday). Fifteen years of predicted load and actual SMP data for Korea were
utilised, and the outcomes were validated against a non-optimised model. The results
demonstrated that the proposed approach outperforms traditional forecasting models in accurately
predicting SMP.
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