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Following the liberalisation of the electricity sector and its transition to a 
competitive market structure, price volatility has intensified, as electricity tariffs 
are now formed through market-based pricing mechanisms. Electricity price time 
series exhibit complex properties, including pronounced instability, strong non-
linearity, and substantial fluctuations. In response to these characteristics, this 
study concentrates on the development of a day-ahead system marginal price 
(SMP) forecasting framework based on an enhanced Elman Neural Network 
(ENN). To improve the predictive capability of the proposed ENN, a modified 
pelican optimisation algorithm is employed to optimise its parameters. For the 
selection of short-term input variables, the Pearson correlation coefficient is 
applied to identify the most relevant factors. In contrast, long-term input 
variables are determined by incorporating the discrete Fre chet distance, 
alongside seasonal attributes, day-type information, forecasted load, and 
historical SMP values. A comprehensive dataset spanning fifteen years is used to 
evaluate the effectiveness of the proposed model. The empirical results 
demonstrate that the suggested approach achieves superior forecasting accuracy 
compared with conventional SMP prediction methods, confirming its effectiveness 
for electricity market price forecasting. 

 
1. Introduction 

The gradual transition from monopolistic electricity markets to competitive market structures, 
together with the transfer of public-sector responsibilities to private entities, has progressively 
altered the economic behaviour of firms operating within the electricity sector, despite enduring 
structural differences across systems [1]. This transformation has introduced new operational 
conditions and risk exposures for market participants, as competitive electricity markets 
increasingly resemble other traded commodity markets [2; 5; 7]. Within this environment, firms 
pursue strategies aimed at maximising revenue while simultaneously limiting costs and mitigating 
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exposure to uncertainty. A central objective for suppliers operating in restructured electricity 
markets is the effective management of financial risk, which primarily arises from price volatility 
and fluctuations in demand volume [10].  

Over the past decade, extensive regulatory reforms have substantially reshaped the 
organisation and operation of electricity networks. These reforms have dismantled the traditional 
vertically integrated structure of energy utilities, leading to a fundamental reconfiguration of their 
operational and managerial frameworks. In jurisdictions where such reforms have been 
implemented, electricity generation, transmission, and distribution activities have been fully 
unbundled and assigned to separate entities. Unlike previous arrangements, in which a single 
authority managed all operational stages, each component of the restructured electricity system 
now functions independently according to its own objectives and operational characteristics [11; 
13; 14; 17; 18]. Although these components remain technically interconnected, their economic 
activities are governed by market mechanisms rather than central coordination, necessitating the 
establishment of organised markets to align economic incentives.  

The intensification of competition within electricity markets has made accurate electricity price 
forecasting indispensable for all market participants. Precise price predictions enable utilities to 
design effective supply strategies, optimise bilateral contractual arrangements, and reduce 
exposure to financial risk [3]. At the same time, consumers depend on reliable cost forecasts to 
guide consumption decisions and identify opportunities to minimise electricity-related 
expenditures. As competitive electricity markets have evolved, the structural importance of price 
indicators such as SMP has increased considerably [22; 24]. SMP constitutes a critical informational 
signal for electricity producers and energy-related firms seeking to improve profitability in 
competitive environments [6]. However, forecasting SMP remains particularly challenging, as 
electricity is widely recognised as one of the most volatile commodities traded in modern markets.  

SMP may vary rapidly, often on an hourly basis, in response to the continuous balancing of 
electricity supply and demand. In addition, SMP is influenced by multiple external factors, including 
fuel price dynamics, infrastructure development, and long-term contractual agreements between 
suppliers and consumers. Consequently, the development of a robust and adaptable SMP 
forecasting framework capable of capturing both short-term and long-term price dynamics is 
essential. Within the organisation and management of the energy sector, SMP forecasting 
represents a comprehensive and strategically significant process [25; 27; 34]. Over the past two 
decades, numerous forecasting approaches have been proposed, reflecting diverse economic 
perspectives and technical methodologies. In parallel, accurate load forecasting has become a 
fundamental task in the planning of electricity distribution networks, as it supports investment 
decision-making and facilitates efficient project scheduling [36].  

Efficient operation of the electricity sector depends on meeting multiple performance criteria, 
including system reliability and operational security [33]. The inherently volatile nature of electricity 
demand requires operators to allocate sufficient generation and transmission capacity to ensure 
supply stability, while aligning technical planning with financial evaluation to control operating 
costs. The foundation of such analyses lies in forecasting accuracy, as errors directly affect the 
financial performance of grid management and system control activities [8]. During operational 
stages, heightened uncertainty or conservative system utilisation further amplifies sensitivity to 
forecasting inaccuracies [9; 15]. Forecasting errors may result in inefficient operational decisions, 
such as unnecessary energy purchases, suboptimal electricity sales, or the avoidance of unit 
shutdowns associated with high start-up costs, all of which impose additional financial burdens [20; 
32]. Historically, electricity price forecasting relied primarily on statistical analysis techniques; 
however, these approaches have shown limitations in capturing the complex dynamics of 
restructured electricity markets.  
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In recent years, a wide range of advanced techniques has been introduced to improve SMP 
forecasting performance. Among these, neural network-based methods have demonstrated strong 
potential for reducing prediction errors and enhancing operational efficiency. Load forecasting 
remains one of the most critical tasks in the operation and maintenance of electricity systems, as 
improved accuracy directly supports more effective system planning. Neural network techniques 
have gained increasing attention as predictive tools due to their strong capabilities in classification, 
functional approximation, and complex pattern mapping [37]. A key advantage of these models lies 
in their ability to learn intricate pricing behaviours that are difficult or computationally intensive to 
identify using conventional analytical approaches [38].  

Several studies have examined the application of advanced modelling techniques to SMP 
forecasting. One study developed a day-ahead SMP prediction framework using artificial neural 
networks combined with similarity-based information, demonstrating improved accuracy through 
the application of k-fold cross-validation and long-term historical data [28]. Using fifteen years of 
historical load and SMP data, the proposed method outperformed traditional forecasting 
approaches. Another investigation applied nonlinear autoregressive exogenous models and 
multilayer perceptron’s to SMP forecasting within the Korean electricity market, comparing results 
with those obtained using Autoregressive Integrated Moving Average models across multiple 
forecasting horizons [28]. The findings indicated that all approaches achieved relatively low 
forecasting errors, with optimal performance dependent on model configuration and hidden node 
selection.  

Additional research evaluated machine learning techniques for day-ahead SMP forecasting 
within the Italian electricity market [40]. Key explanatory variables included lagged SMP values and 
cross-market price indicators. Results showed that training models on larger datasets improved 
predictive accuracy, while sensitivity analysis revealed that modest data perturbations could 
substantially increase forecasting error metrics. Long-term SMP forecasting has also been addressed 
using error correction models that incorporate fuel price information [31]. These approaches 
demonstrated strong out-of-sample performance, particularly when accounting for long-run 
equilibrium relationships between SMP and natural gas prices. Furthermore, the operation of Smart 
Microgrids under carbon taxation and environmental policy constraints has been investigated, 
showing that systems integrating Distributed Energy Resources (DER) and Renewable Energy 
Sources (RES) can simultaneously reduce CO2 emissions and operational costs while maintaining 
reliable performance, assuming grid connectivity and accounting for emissions from imported 
electricity [4].  

Building on these findings, the present research proposes a day-ahead SMP forecasting 
framework that integrates both short-term and long-term statistical information. Long-term 
historical data are incorporated to enhance predictive accuracy, leading to the classification of input 
parameters into short-term type input variables (STIV) and long-term type input variables (LTIV). 
STIV are selected using Pearson correlation analysis, while LTIV incorporate a season and day 
indicator (SDI) derived from discrete Fréchet distance analysis, which captures hourly SMP pattern 
similarities across different day types. By combining recent and historical information, the proposed 
framework constructs a comprehensive input set for SMP prediction. The final forecasting model is 
developed through the integration of a modified ENN with an enhanced pelican optimisation 
algorithm, which has demonstrated strong capability in identifying complex patterns when handling 
a large number of input parameters.  

 
2. System Definition 

SMP is determined by the interaction between electricity demand and generation costs. 
Consequently, it reflects the balance between economic dispatch decisions and the anticipated level 
of electricity demand. Electricity generation is scheduled to satisfy forecasted demand at the 
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minimum possible cost, and SMP is calculated based on the highest marginal generation cost among 
the dispatched power units [16; 19]. Under this mechanism, energy service providers prioritise 
generation bids with the lowest production costs, and dispatch continues incrementally in 
ascending order of generation cost until the forecasted demand is fully satisfied. The dominant 
component of generation cost is associated with the procurement of primary energy resources. 
Accordingly, SMP is strongly influenced by the cost of acquiring these energy inputs, which exhibits 
considerable temporal variability [35]. This study examines the evolution of SMP behaviour and 
develops a forecasting framework using historical data collected in South Korea over the period 
from 2001 to 2016. The analysed data reveal a dynamic pattern characterised by increasing 
electricity demand and persistent fluctuations in primary energy prices over time. These long-term 
variations indicate that short-term forecasting approaches alone are insufficient for accurate day-
ahead SMP prediction, as they fail to capture underlying long-term price movements. Therefore, to 
effectively extract the latent information embedded within historical SMP patterns, it is essential to 
analyse both long-term and short-term data simultaneously.  

2.1. Analysis of Short-Term Historical SMP Data 
Short-term historical data consist of information associated with the prediction time and 

encompass hourly observations extending back to the previous week. These data are categorised 
into two groups, namely hourly-based variables and daily-based variables, both defined at each 
hour of analysis. Hourly-based data include observations from the hour immediately preceding the 
forecasted time and extend backward over the previous twenty-three hours, for example from 
Py,d,t1 to Py,d,t23. In contrast, daily-based data incorporate observations recorded at the same 
hour of the forecasted time for each of the preceding seven days, for example from Py,d1,t to 
Py,d7,t. To determine the most relevant candidates for short-term input variables, the Pearson 
correlation coefficient (PCC) is employed as the selection criterion. PCC is utilised to quantify the 
strength of the linear relationship between potential input variables and the target output, thereby 
enabling the identification of variables with the highest predictive relevance. The technical 
formulation of PCC is presented as follows.  

𝑉𝑖𝑐𝑐
𝑚 =

𝑛 × (∑𝑋𝑚𝑌) − (∑𝑋𝑚) × (∑𝑌)

√(𝑛 × (∑(𝑋𝑚)2) − (∑(𝑋𝑚)2)) × (𝑛 × (∑𝑌2) − (∑𝑌2))

 
(1) 

Where, 𝑛 describes data number, 𝑉𝑖𝑐𝑐
𝑚  stands for the input variable number m's correlation 

coefficient, 𝑋𝑚 describes the input variable number 𝑚, and 𝑌 signifies the output. Fig. (1) illustrates 
the results obtained from the Pearson Correlation Coefficient analysis conducted on both an hourly 
and daily basis. 

  
(A) (B) 

Fig. 1: Findings of  Pearson Correlation Coefficient at Every Hour and Every Day Basis (A) Up to the Preceding 24 
h, and (B) Up to the Preceding Week 
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Based on the assessed significance of the correlation coefficients, the final selection of STIV is 
conducted from the set of candidate input variables. The statistical relevance of each correlation 
coefficient is examined through the application of a t-test, which is used to evaluate the 
corresponding null hypothesis regarding the significance of the observed correlation. As a result, 
the STIVs provide the previous hour's short-term type input variables (𝑃𝑦,𝑑,𝑡−1), the same hour of 

the previous day (𝑃𝑦,𝑑−1,𝑡), and the identical hour of the prior week (𝑃𝑦,𝑑−7,𝑡). The forecasted load 

also exerts a notable influence on SMP. The Pearson correlation coefficient was calculated for the 
year 2016 using one year of historical data, resulting in a value of 0.53, which indicates a 
moderately positive relationship between the predicted load and SMP. As a result, the predicted 
load (𝐿𝑦,𝑑,𝑡) is added as an input variable. As a result, the predicted load’s historical data at the 

same time as the historical system marginal price are included and designated as 𝐿𝑦,𝑑,𝑡−1, 𝐿𝑦,𝑑−1,𝑡, 

and 𝐿𝑦,𝑑−7,𝑡 that define the predicted load at the preceding time, the predicting load at the same 

time on previous day, and predicted load at the same time in preceding week. 

2.2. Analysis of Long-Term Historical SMP Data 
Data collected over the same periods in previous years are regarded as long-term historical 

data. To assemble an extended dataset for SMP, fifteen years of records, spanning from 1 January 
2001 to 31 December 2016, were analysed. This historical information serves two primary purposes. 
The first purpose is to incorporate the long-term fluctuation patterns of SMP when constructing 
forecasting models. Fig. (2) depicts the variations in SMP trends over the fifteen-year period. 

 
Fig. 2: The Trend Varies Over a Period of 15 Years in Korea 

As illustrated in Fig. (2), the daily average SMP in Korea exhibits temporal variation driven by 
changes in electricity demand and fluctuations in the cost of primary energy procurement. During 
the initial five years, SMP values remain relatively low and stable. Beginning in 2006, a linear 
increase is observed, followed by a sharp decline in 2009, after which SMP rises rapidly again in 
2010. The values remain steady until 2012, with a slight upward trend towards the end of that year, 
and subsequently show a general tendency to decrease. Consequently, when constructing 
forecasting models, long-term historical data are regarded as capturing the underlying 
developmental trends of SMP. The second purpose of analysing long-term historical data is to 
extract specific SMP patterns for selected days. Examination of fifteen years of historical records 
reveals that certain days exhibit distinctive behaviour. Fig. (3) presents the days in 2016 that display 
anomalous SMP patterns compared with typical days. 

 
Fig. 3: SMP Hourly Pattern from January 1 to June 30, 2016 
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The days exhibiting distinctive SMP patterns are indicated by black circles. The limited 
availability of data for such atypical days presents challenges in constructing accurate forecasting 
models, which may reduce predictive performance. Therefore, incorporating long-term historical 
data provides additional insights into these uncommon patterns. Accordingly, both SMP and 
forecasted load from previous years are included as components of the LTIV corresponding to the 
same forecasted time. 𝑃𝑦−1,𝑑,𝑡, 𝐿𝑦−1,𝑑,𝑡, 𝑃𝑦−2,𝑑,𝑡, 𝐿𝑦−2,𝑑,𝑡, …, 𝑃𝑦−15,𝑑,𝑡, 𝐿𝑦−15,𝑑,𝑡 are the variables' 

notational units. 
 

3. Fréchet Distance 
In some cases, historical data from earlier years within the long-term dataset may not exhibit 

patterns comparable to the forecasted day, which can reduce the accuracy of predictions. To 
address this, only historical days that demonstrate similarity to the forecasted day are utilised as 
input variables in the proposed method, effectively serving as reference days. Following the 
methodology in [28], the Fréchet distance is employed to quantify the similarity between days. This 
measure evaluates the degree of similarity between two curves by considering both the shapes of 
the curves and the spatial positions of points along them. Unlike the conventional Euclidean norm, 
the Fréchet distance provides a more suitable metric for comparing SMP patterns across different 
days. It is determined how much the separate Fréchet distance between curves P and curves Q 

(𝐷𝑑𝑓
𝑃,𝑄) is as follows [12]: 

𝐷𝑑𝑓
𝑃,𝑄 = min(max𝑑(𝑝̇𝑖, 𝑞̇𝑘)) (2) 

𝑑(𝑝, 𝑞) = ‖𝑝 − 𝑞‖ = √∑(𝑝𝑗 − 𝑞𝑗)
2

𝑗

 
(3) 

Where, 𝑝̇𝑗 and 𝑞̇𝑘 represent, in turn, the 𝑗𝑡ℎ and 𝑘𝑡ℎ discrete points of curves 𝑃 and 𝑄 that may 

be obtained via the Fourier transformation. 𝑑(𝑝, 𝑞) signifies the symbols represents the separation 
between 𝑝 and 𝑞, which have the coordinates 𝑝𝑗 and 𝑞𝑗. 

The calculated discrete Fréchet distances are categorised into four groups, yielding four 
principal hourly SMP patterns. These patterns are subsequently utilised in the development of a 
dedicated forecasting model. Furthermore, the identified patterns are generalised into a set of 
reference criteria to compute the Fréchet distance for the forecasted day. The generalisation 
procedure takes into account historical Fréchet distances, seasonal effects, and day-type 
characteristics, including holidays and working days. The following section outlines the essential 
assumptions underlying the Fréchet distance calculation: 

Holiday in Spring Season 
𝐷𝑑𝑓 ∈ [0.2,0.3] (4) 

Holiday in Other Season 
𝐷𝑑𝑓 ∈ [0.3, 0.4] (5) 

Lunar New Year and Thanksgiving Day 
𝐷𝑑𝑓 ∈ [0,0.1] (6) 

In Other Days 
𝐷𝑑𝑓 > 0.4 (7) 

The challenge of discrepancies between the forecast day and reference days can be addressed 
through the application of the Fréchet distance. Each day is assigned a Fréchet distance value, and 
the selection of reference SMP data from historical records is adjusted according to the Fréchet 
distance of the forecasted day. If the Fréchet distance of a candidate reference day differs from that 
of the predicted day, the reference is shifted to an earlier or later day until alignment is achieved 
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[39]. This adjustment process continues iteratively until the Fréchet distance of the reference day 
matches that of the forecast day. 

The algorithm finds the nearby earlier or next day that has an Fréchet distance comparable to 
that of the forecast day, for instance, if it’s supposed that there is a difference between the Fréchet 
distance of the forecast day and the Fréchet distance of the historical data (for instance, 𝐷𝑑𝑓(𝑦 −

1, 𝑑, 𝑡) = 2 and 𝐷𝑑𝑓(𝑦, 𝑑, 𝑡) = 1). So, the modified long-term type input variable are 

𝑃𝑦−1,𝑑,𝑡
𝑎 , 𝑃𝑦−2,𝑑,𝑡

𝑎 , … , 𝑃𝑦−15,𝑑,𝑡
𝑎 . The equivalent predicted load for the considered points is defined as 

𝐿𝑦−1,𝑑,𝑡
𝑎 , 𝐿𝑦−2,𝑑,𝑡

𝑎 , … , 𝐿𝑦−15,𝑑,𝑡
𝑎 . The pseudocode outlining the steps of this methodology is presented 

as follows: 

Algorithm 1: Pseudocode of the Fréchet Distance Tuning for Choosing Input Parameters 

Start 
Choose STIPs (short-term input parameters), 

including: 𝑃𝑦,𝑑,𝑡−1, 𝑃𝑦,𝑑−1,𝑡, 𝑃𝑦,𝑑−7,𝑡, 𝐿𝑦,𝑑,𝑡, 𝐿𝑦,𝑑,𝑡−1, 𝐿𝑦,𝑑−1,𝑡, 𝐿𝑦,𝑑−7,𝑡 

Choose LTIPs (long-term input parameters), 
including: 𝑃𝑦−1,𝑑,𝑡, …… , 𝑃𝑦−15,𝑑,𝑡, 𝐿𝑦−1,𝑑,𝑡, …… , 𝐿𝑦−15,𝑑,𝑡 

IF, SDI of LTIP is equal to SDI of predict Day: 
       Choose Updated LTIP, including: 

 𝑃𝑈
𝑦−1,𝑑,𝑡, …… , 𝑃𝑈

𝑦−15,𝑑,𝑡, 𝐿
𝑈

𝑦−1,𝑑,𝑡, …… , 𝐿𝑈
𝑦−15,𝑑,𝑡 

Else: 
Discover the nearest SDI-based LTIP:  
( 𝑃𝑈

𝑦−𝑖,𝑑,𝑡 =  𝑃𝑦−𝑖,𝑑∓1,𝑡, 𝐿
𝑈

𝑦−𝑖,𝑑,𝑡 =  𝐿𝑦−𝑖,𝑑∓1,𝑡) 

End if 
Train the data 
END 

 
4. Elman Neural Networks 

In this section, SMP forecasting is conducted using the ENN. The advent of artificial neural 
networks has introduced a novel paradigm in applied science and engineering, enabling solutions to 
problems that were previously difficult to address using conventional methods. Tasks such as 
pattern recognition, data clustering, time series forecasting, electricity price prediction, satellite 
navigation, routing, and robotic control, which traditionally posed significant analytical challenges, 
can now be approached with increased accuracy and efficiency through neural network 
methodologies. Artificial neural networks are parallel information-processing systems inspired by 
the structure and function of biological neural networks. The primary objective in developing such 
systems is to construct a mathematical model that emulates human learning and reasoning through 
network architectures capable of rapid information processing. Neural networks consist of 
numerous fundamental processing units, referred to as neurons, which are interconnected via 
synaptic links associated with adjustable weight parameters. These adaptive weights encode the 
knowledge acquired by the network, which is essential for performing specific tasks. Neural 
networks have been widely applied across engineering domains, including electricity price 
forecasting. The Elman network is a type of multi-layer neural network. While Markov models 
provide a robust analytical framework, the ENN incorporates principles inspired by Markov 
processes, representing this concept within a hidden layer. The network architecture comprises four 
primary layers: the input layer, context layer, hidden layer, and output layer. Fig. (4) presents a 
simplified schematic of the ENN structure.  
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Fig. 4. Simple Arrangement of the Elman Neural Network 

The ENN illustrated in Fig. (4) consists of a single hidden layer. Outputs from the hidden-layer 
neurons are fed back into the network through time-delayed units, known as context units, which 
functionally act as additional input nodes for the network. The network’s output is therefore a non-
linear transformation that depends both on the current external inputs and on the hidden-layer 
activations from the preceding timestep. Recurrent connections between the hidden layer and 
context units possess fixed weight coefficients, allowing the network to process temporal 
information and capture dependencies across observed sequences. As a result, training the ENN is 
generally less complex than training a conventional feedforward network with standard error 
backpropagation. While it shares many operational similarities with traditional backpropagation 
networks, the ENN benefits from the one-step-ahead feedback mechanism, which accelerates the 
learning process. Mathematically, the input layer of the ENN is expressed as follows:  
𝐼𝑖(𝑙) = 𝑒𝑖(𝑙), (8) 

Where, 𝑙 defines the iteration number, and 𝑖 = 1,2, . . . , 𝑛. 
Subsequently, the output of the hidden layer, denoted as layer k, in the ENN is represented by 

the following equation: 

𝑣𝑘(𝑙) = ∑𝜔𝑘𝑗
1 (𝑙)𝑥𝑗

𝑐(𝑙)

𝑁

𝑗=1

+ ∑𝜔𝑘𝑖
2 (𝑙)𝑢𝑖(𝑙)

𝑛

𝑖=1

 

𝑘 = 1,2, . . . , 𝑁 

(9) 

Where, 𝑥𝑗
𝑐(𝑙) labels the transmitted data from the contextual node 𝑘, 𝜔𝑘𝑗

1 (𝑙) designates 

number 𝑗 and number 𝑗 weights for the hidden layers.  

Consequently, for the input layer (𝐼), the hidden layer (𝑘) weight has been attained by 𝜔𝑘𝑖
2 (𝑙). 

Consequently, the integration of the hidden layer output into the context layer is performed 
according to the following procedure: 
𝑊𝑘(𝑙) = 𝑓𝑜(𝑣̄𝑘(𝑙)) (10) 

Where, 

𝑣̄𝑘(𝑙) =
𝑣𝑘(𝑙)

𝑚𝑎𝑥[𝑣𝑘(𝑙)]
 

(11) 

represents the normalised value of the hidden layer output. 
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The context layer is mathematically defined as follows: 
𝐶𝑘(𝑙) = 𝛽𝐶𝑘(𝑙 − 1) + 𝑊𝑘(𝑙 − 1), 
𝑘 = 1,2, . . . , 𝑁 

(12) 

Where, 𝑊𝑘 signifies the self-connected feedback gain in the range [0, 1] [36]. 
Finally, the output of the network is computed using the following equation: 

𝑦𝑜(𝑙) = ∑ 𝜔𝑜𝑘
3 (𝑙)𝑊𝑘(𝑙)

𝑁

𝑘=1

, 

𝑜 = 1,2, . . . , 𝑛 

(13) 

Where, 𝜔𝑜𝑘
3  represent the connection weight by the layer 𝑘 into layer 𝑂.  

𝑊ℎ
𝑖, 𝑊ℎ

𝑐, and 𝑊ℎ
𝑜 describe the weight of input matrix, context matrix, and output matrix, 

respectively. The input and output layers dimension are n, that is: 

[
𝑥1(𝑡)

𝑦(𝑡)
] = [

𝑥1
1(𝑡), 𝑥2

1(𝑡), . . . , 𝑥𝑛
1(𝑡)

𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡)
]
𝑇

 
(14) 

Although, the context layer dimension is m. 
A novel approach proposed in [38] was employed to modify the ENN, enhancing both learning 

accuracy and convergence, as illustrated in Fig. (5). 

 
Fig. 5: Improved Elman Neural Network 

Where, t signifies the present epoch, c describes a constant, and 𝜇 stands for the learning rate. 
In this research, the weights of the modified ENN are optimised using an enhanced variant of the 
Pelican Optimization Algorithm. 

 
5. Improved Pelican Optimization Algorithm 

The population-based Pelican Optimization Algorithm and its associated mathematical 
formulation are initially introduced. 

5.1. Motivation and Pelican Behaviour throughout Hunting 
Pelicans possess a large pouch in their pharynx, which they use to capture and ingest their prey. 

These birds are highly social and typically form groups that can number in the hundreds. While 
turtles, frogs, and crustaceans are occasionally consumed, fish constitute the primary component of 
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their diet. Pelicans generally hunt cooperatively, coordinating their movements to improve 
efficiency. During hunting, a pelican identifies its target and dives from a considerable height, 
typically between 10 and 20 metres. Certain pelican variants, however, approach their prey from 
lower altitudes. Upon reaching the water, they extend their wings parallel to the surface, creating a 
disturbance that drives fish into shallower areas, thereby facilitating capture. Before swallowing 
their prey, pelicans tilt their heads downward to expel excess water ingested during the hunt. The 
structured hunting strategies of pelicans demonstrate their proficiency as predators. These 
behavioural mechanisms inspired the development of the proposed algorithm, which incorporates 
analogous strategies to enhance optimisation performance.  

5.2. The Suggested POA Mathematical Model 
Within this computational model, each pelican agent represents a candidate solution within the 

population of the algorithm. The optimisation variables are defined according to their spatial 
positions within the solution space. The population is initially generated using stochastic methods 
while adhering to predetermined boundary conditions, including upper and lower limits. 

𝑧𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑. (𝑢𝑗 − 𝑙𝑗), 𝑖 = 1,2, … , 𝑁,

𝑗 = 1,2, … ,𝑚, 

 (15) 

Where, 𝑧𝑖,𝑗 indicates the significance of the 𝑗𝑡ℎ variable determined by the 𝑖𝑡ℎ individual 

solution, 𝑁 represents the number of population candidate, 𝑚 indicates the numeral of problem 

variables, 𝑟𝑎𝑛𝑑 defines a random amount between 0 and 1, 𝑙𝑗 and 𝑢𝑗  describe the 𝑗𝑡ℎ lower and 

upper bound of decision variables. 
In the proposed POA, the population matrix presented below characterises the members of the 

pelican population. Each row of the matrix corresponds to an individual solution, while the columns 
represent the respective values of the decision variables for the optimisation problem. 

𝑍 =

[
 
 
 
 
𝑍1

⋮
𝑍𝑖

⋮
𝑍𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑧1,1

⋮
𝑧𝑖,1

⋮
𝑧𝑁,1

⋯
⋱
⋯
⬚
⋯

𝑧1,𝑗

⋮
𝑧𝑖,𝑗

⋮
𝑧𝑁,𝑗

⋯
⬚
⋯
⋱
⋯

𝑧1,𝑚

⬚
𝑧𝑖,𝑚

⋮
𝑧𝑁,𝑚]

 
 
 
 

𝑁×𝑚

 

(16) 

Where 𝑍 and 𝑍𝑖  represent the pelicans population matrix and the 𝑖𝑡ℎ pelican. 
Based on the individual solutions defined above, the fitness function for the given problem can 

be evaluated. The resulting fitness function vector, presented below, indicates the computed fitness 

values for each solution. 

Where the fitness function amount of the 𝑖𝑡ℎ individual solution is denoted by 𝐹𝑖. 
The individual solution vectors are iteratively updated by mimicking the offensive and prey-

capturing behaviours of pelicans. The algorithm’s simulation consists of two principal stages: 
exploration, which models movement toward the prey, and exploitation, which replicates winging 
actions along the water surface to maximise capture efficiency. 

Step 1: Exploration (Movement in the Direction of the Prey) 
Once the hunting location is established by the pelican, it moves toward this target. In the 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑍1)

⋮
𝐹(𝑍𝑖)

⋮
𝐹(𝑍𝑁)]

 
 
 
 

𝑁×1

 

(17) 
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algorithm, this movement simulates the search within the solution space and represents the 
exploration capability of the POA in identifying diverse regions within that space. It is important to 
note that in the POA, the hunting locations are generated randomly within the solution domain, 
which enhances the algorithm’s exploratory performance during the search for optimal solutions. 
The mathematical formulation corresponding to the process described above is as follows: 

𝑧𝑖,𝑗
𝑃1 = {

𝑧𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑝𝑗 − 𝐼. 𝑧𝑖,𝑗),            𝐹𝑝 < 𝐹𝑖   

𝑧𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑧𝑖,𝑗 − 𝑝𝑗),                 𝑒𝑙𝑠𝑒
 

(18) 

Where 𝑧𝑖,𝑗
𝑃1  denotes the novel place of the 𝑖𝑡ℎ pelican in the 𝑗𝑡ℎ dimension according to this step, 

𝐼 is a random value the same as 2 or 1, which is chosen in any iteration and for any individual,  𝑝𝑗 

represents the place of prey in the 𝑗𝑡ℎ dimension, and 𝐹𝑝 indicates its cost function amount. When 

the parameter I is set to two, it induces greater movement of a population member, enabling the 
search of previously unexplored regions of the solution space. The precision of the solution space 
analysis is influenced by the chosen value of I. Updates to the pelican’s position are accepted only if 
they lead to an improvement in the fitness function, ensuring that the algorithm avoids non-optimal 
regions. The corresponding governing equations for this procedure are formulated as follows: 

𝑍𝑖 = {
𝑍𝑖

𝑃1 , 𝐹𝑖
𝑃1 < 𝐹𝑖;

𝑍𝑖,   𝑒𝑙𝑠𝑒,
 

(19) 

Where 𝑍𝑖
𝑃1  defines the novel situation of the 𝑖𝑡ℎ pelican and 𝐹𝑖

𝑃1  indicates its fitness function 

value on the basis of step 1. 

Step 2:  Exploitation (Winging on the Plane of the Water) 
When the pelican descends to the water surface and extends its wings, the fish are driven 

upward and captured. By simulating this hunting behaviour, pelicans can seize a large number of 
fish efficiently. In the context of the POA, this mechanism enables convergence toward superior 
solutions within the search space, thereby enhancing the algorithm’s local search capability and 
exploitation efficiency. From a mathematical perspective, achieving convergence toward an optimal 
solution requires a structured evaluation of the neighbourhood surrounding the pelican’s position. 
This behaviour is represented by the following equation: 

𝑧𝑖,𝑗
𝑃2 = 𝑧𝑖,𝑗 + 𝑅. (1 −

𝑡

𝑇
) . (2. 𝑟𝑎𝑛𝑑 − 1). 𝑧𝑖,𝑗, 

(20) 

Where 𝑧𝑖,𝑗
𝑃2  defines the novel situation of the 𝑖𝑡ℎ pelican in the 𝑗𝑡ℎ dimension according to this 

step, 𝑅 is a constant value the same as 0.2, 𝑅. (1 −
𝑡

𝑇
) indicates the neighborhood radius of 𝑧𝑖,𝑗, 𝑡 is 

the iteration numerator, 𝑇 represents the max number of iteration. The ability to exploitation of 
POA in order to approach the universally convergent solution is influenced by the hyperparameter 

" 𝑅. (1 −
𝑡

𝑇
)". The magnitude of this coefficient diminishes as the algorithm progresses, resulting in 

a gradual reduction of the neighbourhood radius. In essence, this coefficient enables a finer-
resolution examination of the local topology surrounding each candidate solution. Consequently, 
the POA is able to converge toward solutions that are closer to the global, or even the absolute 
global, optimum. 

The following equation formalises the update mechanism used to accept or reject a pelican’s 
new position: 

𝑍𝑖 = {
𝑍𝑖

𝑃2 , 𝐹𝑖
𝑃2 < 𝐹𝑖;

𝑍𝑖,   𝑒𝑙𝑠𝑒,
 

(21) 

Where 𝑍𝑖
𝑃2  represents the novel situation of the 𝑖𝑡ℎ pelican and 𝐹𝑖

𝑃2  indicates its fitness function 
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value on the basis of step 2. 
Repetition of Steps, Pseudo-Code: Once all individual members have been updated following 

the procedures outlined above, the elite solution is iteratively refined by considering both the newly 
generated positions of the population members and their associated fitness values. The algorithmic 
steps are then repeated according to the governing equations described previously. Ultimately, the 
best solution obtained over the course of the iterations is presented as a quasi-optimal solution to 
the given problem. The corresponding POA pseudo-code is provided below. 

Algorithm 2: Pseudocode of POA 

Start POA. 
Enter the information of the optimization problem. 
Specify the POA individuals size (N) and the numeral of iteration. 
Initialization of the location of pelicans and compute the fitness function. 
For 𝑡 = 1: 𝑇. 
Create the location of the prey randomly. 
For 𝐼 = 1:𝑁. 
Step 1: exploration (movement in the direction of the prey). 
For 𝑗 = 1:𝑚. 

Compute novel situation of the 𝑗𝑡ℎ dimension utilizing Eq. (4). 
End. 

Renew the 𝑖𝑡ℎ individuals member utilizing Eq. (5). 
Step 2: exploitation (winging on the plane of the water). 
For 𝑗 = 1:𝑚. 

Compute novel situation of the 𝑗𝑡ℎ dimension utilizing Eq. (6). 
End. 

Renew the 𝑖𝑡ℎ individuals member utilizing Eq. (7). 
End. 
Renew finest individual solution. 
End. 
Output finest solution achieved by POA. 
End POA. 

5.3. Improved Pelican Optimization Algorithm (IPOA) 
Certain limitations of the conventional Pelican Optimization Algorithm, including the random 

replacement of the least fit pelicans and insufficient exploitation, can result in slow convergence. 
The original POA has been critically examined, and various enhancements have been proposed to 
address these shortcomings. In this study, two specific modifications are introduced to improve the 
efficiency of the POA in overcoming these issues [29]. The first modification incorporates the Lévy 
flight mechanism. Lévy flight, widely adopted in optimisation algorithms, is founded on principles of 
stochastic movement and is modelled using random walk theory. The Lévy flight (𝑭𝒍) should be 
formulated by the following equation: 
𝐹𝑙(𝛼) ≅ 1/𝛽1+𝜏  (22) 

𝛼 = 𝐴/|𝐵|1/𝜏, 𝐴, 𝐵~𝑁(0, 𝜎2) (23) 

𝜎2 = {
sin (𝜋𝜏/2)

2(1+𝜏)/2
×

Γ(1 + 𝜏)

𝜏Γ((1 + 𝜏)/2)
}

2
𝜏

 

(24) 

Where, 𝜏 signifies the constant of the Lévy flight and is set 1.5 Li et al. [23], 𝛽 represents the size 
of step, and Γ(. ) defines the Gamma function. 
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Accordingly, the steps of the enhanced mechanism can be expressed using the following 
equation: 

𝑧𝑖,𝑗
𝑃1 = {

𝑧𝑖,𝑗 + 𝐹𝑙(𝜎). (𝑝𝑗 − 𝐼. 𝑧𝑖,𝑗),            𝐹𝑝 < 𝐹𝑖   

𝑧𝑖,𝑗 + 𝐹𝑙(𝜎). (𝑧𝑖,𝑗 − 𝑝𝑗),                 𝑒𝑙𝑠𝑒
 

(25) 

The second enhancement involves incorporating a chaos mechanism into the algorithm. The 
chaos mechanism is typically represented by the following formulation: 

𝐶𝑀𝑖+1
𝑗

= 𝑓(𝐶𝑀𝑖
𝑗
) 

𝑗 = 1,2, … ,𝑁 

(26) 

Where, 𝑓(𝐶𝑀𝑖
𝑗
) defines generator function, 𝑁 signifies the map [30].  

By analysing various chaotic functions, this study selected the sinusoidal chaotic map as a 
representative chaos mechanism. This method employs pseudo-random numbers rather than 
purely random ones, enhancing the algorithm’s initial convergence and lowering computational 
complexity. Consequently, the motion of the population members is adjusted according to this 
modification. Under the revised formulation, the generation of population individuals is determined 
as follows: 

𝑧𝑖+1,𝑗
𝑛𝑒𝑤 = (𝑧𝑖,𝑗)

2
sin(𝜋𝑧𝑖,𝑗) (27) 

Where, 𝑧0,𝑗 = 𝑟𝑎𝑛𝑑(. ). 

Algorithm Authorization 
The performance of the proposed improved Pelican Optimization Algorithm must be evaluated 

using a set of widely recognised benchmark functions to demonstrate its effectiveness. To this end, 
the enhanced POA is applied to several standard test functions, including Levi No. 03, Six-hump 
Camel, Leon, and Schwefel functions, in order to validate its optimisation capability. The 
mathematical definitions of these functions are as follows:  

Six-Hump Camel: This benchmark function features six local minima, of which two correspond to 
the global optima. The parameter space is restricted by x₁ = [-3, 3] and x₂ = [-2, 2]. The function is 
analysed using the following relation:  

Levi No. 03:  This benchmark function is highly non-convex. The Levi No. 03 function, defined 
over a two-dimensional solution space, represents a multimodal optimisation problem. The domain 
for all variables is limited to the interval [-10, 10]. The corresponding objective function for Levi No. 
03 is expressed using the following equation: 

 

𝑓2(𝑧) = sin2(3𝜋𝑧1) + (𝑧1 − 1)2(1 + sin2(3𝜋𝑧2)) + (𝑧2 − 1)2(1 + sin2(2𝜋𝑧2)) (29) 

Schweffel: The Schwefel function is a challenging benchmark characterised by multiple local 
minima. Its search domain is typically represented as an n-dimensional hypercube, with each 
variable ranging from -500 to 500, defined as follows: 

𝑓3(𝑧) = 418.9829𝑑 − ∑𝑧𝑖 𝑠𝑖𝑛 (√|𝑧𝑖|)

𝑑

𝑖=1

 
(30) 

The Leon Function:  This benchmark function is continuous, non-convex, and defined over a 
two-dimensional solution space. The Leon function is recognised as relatively complex and has been 
extensively used in optimisation studies. It is defined over the interval [0, 10], and its fitness value is 
calculated using the following equation: 

𝑓4(𝑧) = 100(𝑧2 − 𝑧1
3)2 + (1 − 𝑧1)

2 (31) 

𝑓1(𝑧) = (4 − 2.1𝑧1
2 +

𝑧1
4

3
) 𝑧1

2 + 𝑧1 × 𝑧2 + (−4 + 4𝑧2
2) × 𝑧2

2 
(28) 
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The results produced by the proposed method are subsequently validated through comparison 
with two established optimisation techniques: the Multi-Verse Optimizer (MVO) [42] and the Owl 
Search Algorithm (OSA) [43]. Table 1 presents the parameter settings employed for these 
optimisation algorithms. 

Table 1 
Set Parameters of the Optimization Algorithms 

Algorithm Parameter Value 

Multi-Verse Optimizer (MVO) Mirjalili et al. 
[26] 

𝑊𝐸𝑃𝑚𝑖𝑛 0.2 
𝑊𝐸𝑃𝑚𝑎𝑥  1 
𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑃) 6 

Owl Search Algorithm (OSA)  Jain et al. 
[21] 

𝑇𝑑𝑒𝑎𝑑  18 
|𝑃| 10 
𝐴𝑐𝑐𝑙𝑜𝑤  0.2 
𝐴𝑐𝑐ℎ𝑖𝑔ℎ  1 

 
For all algorithms, the population size and the maximum number of iterations were set to 50 

and 200, respectively, to ensure reliability and comparability of the results. The simulations were 
conducted on a system with 8.0 GB of memory, an Intel Core i7 CPU at 2.00 GHz, and a 64-bit 
operating system. The performance of the proposed improved Pelican Optimization Algorithm, 
compared with other optimizers, is presented in Table 2, based on evaluation metrics including 
minimum, maximum, mean, and standard deviation (SD) values. Table 2 indicates that the 
enhanced Pelican Optimization Algorithm (POA) surpasses other comparable optimisation methods 
in terms of solution accuracy for the selected benchmark functions, successfully identifying optimal 
solutions even with a limited population size. The algorithm’s robustness is further demonstrated by 
its consistently lower SD values compared with alternative approaches. These findings validate the 
effectiveness of the proposed method in tackling complex optimisation problems. In this study, the 
improved POA is applied to achieve optimal energy management and component sizing within 
hybrid systems. 

Table 2 
Review of the Suggested Optimization Method's Objective Function Analysis 

Algorithm Index F1 F2 F3 F4  

MVO Mirjalili et 
al. [26] 

Min 17.5968e-8 9.1183 7.8831 5.4857e-4 
Max 15.6728e-3 19.2731 11.8992 6.6567e-2 
AVG 22.6527-6 14.8263 9.8665 7.4755e-3 
SD 13.5488-6 12.5591 7.2387 6.3364e-3 

OSA Jain et al. 
[21]  

Min 15.1587e-13 7.5884 3.8437e-3 4.5683-5 
Max 26.6784-9 16.4894 4.5361e-1 6.2154e-3 
AVG 21.0864-11 11.7572 3.7351-2 5.5938e-4 
SD 20.5922-11 12.4435 2.8495e-2 4.1882e-4 

 
IPOA 

Min 11.5491e-18 5.5878 4.4740-5 5.1688-6 
Max 19.6687-14 11.2886 3.2788 8.0735e-4 
AVG 16.4782-16 9.8237 2.8457 7.8848e-5 
SD 15.6766-16 8.5262 3.4351e-3 6.1941e-5 

 
6. Results and Discussion 

The simulation environment for this study was implemented using MATLAB version 2017b on a 
notebook equipped with an AMD A4 3600 CPU, 8 GB of RAM, and a 64-bit Windows 10 operating 
system. For all algorithms, the number of iterations and population size were set to 200 and 40, 
respectively. To ensure reliability, each approach was executed independently 30 times.  The 
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simulation, following the methodology described in the preceding sections, was conducted to 
predict the day-ahead SMP for 2017. The accuracy of the proposed model was evaluated against a 
standard Artificial Neural Network (ANN) employed as a reference model. The performance of the 
SMP forecasting model was assessed using the Mean Absolute Percentage Error (MAPE), which 
measures the effectiveness by computing the percentage difference between the predicted and 
actual SMP values. Mathematically, MAPE is expressed as follows:  

𝑓𝑀𝐴𝑃𝐸(%) =
1

𝑁
(∑

𝑃𝑗
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑃𝑗

𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑃𝑗
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑁

𝑗=1

) × 100 

(32) 

Table 3 presents the overall average MAPE of the proposed model in predicting the SMP for 
2017. Additionally, the table provides the average MAPE values for all Fréchet distances (FD) 
throughout 2017. As shown in Table 3, the proposed model (ANN incorporating Fréchet distance) 
achieves a more accurate forecast, with a total average MAPE of 3.91%, compared to 5.45% for the 
conventional ANN-based model. The proposed approach also demonstrates enhanced performance 
in predicting days characterised by different Fréchet distances. For further validation, the improved 
method (ENN/IPOA) is compared against the modified ENN without optimization (ENN). The 
simulation results are analysed in detail using temporal SMP curves, where representative daily 
profiles are selected according to the Fréchet distance classification criteria. 

Table 3 
The Overall Mean Absolute Percentage Error Average of the Model is used to Predict the System Marginal 
Price in 2017 

 Entire Mean MAPE Mean MAPE FD=1 Mean MAPE FD =2 Mean MAPE FD =3 Mean MAPE FD =4 

Conventional ENN 5.45% 26.36% 6.61% 6.94% 4.31% 
ENN/IPOA 3.91% 17.55% 5.12% 5.56% 2.87% 
Total Days 365 8 32 83 246 

6.1. Day Prediction When Fréchet Distance is 1 
The Fréchet distance for Korea’s major holidays, specifically Lunar New Year and Thanksgiving 

Day, is equal to 1. In 2017, these holidays fell on October 4–6 for Thanksgiving Day and January 27–
30 for Lunar New Year. The predicted SMP for January 28, 2017, is illustrated in Fig. (6). For days 
with a Fréchet distance of 1, the proposed ENN/IPOA model achieves a daily MAPE of 13.65%, 
whereas the conventional ENN model records a daily MAPE of 16.44%. This comparison 
demonstrates that the suggested model provides more accurate SMP predictions than the standard 
ENN on these significant holiday periods. 

 
Fig. 6: Outcome of the System Marginal Price Predicting on January 28 
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6.2. Day Prediction When Fréchet Distance is 2 
Certain holidays and seasonal events, including Labour Day (May 1), Independence Movement 

Day (March 1), Children’s Day (May 5), and Buddha’s Birthday (observed May 3), are assigned a FD 
of 2 in the analysis. Figure 7 illustrates the predicted SMP profile for March 1 as a representative 
example. As shown in Fig. (7), the conventional ENN model achieves a MAPE of 8.16%, whereas the 
proposed ENN/IPOA model attains a significantly lower MAPE of 1.96%, demonstrating superior 
accuracy in SMP prediction. 

 
Fig. 7: Outcome of the System Marginal Price Predicting for March 1 

6.3. Day Prediction When Fréchet Distance is 3 
Days with a Fréchet distance (FD) of 3 include holidays and Sundays occurring outside of the 

spring season, excluding Lunar New Year and Thanksgiving Day. This FD category encompasses 
August 15 (Liberation Day), December 25 (Christmas Day), and January 1 (New Year’s Day). Figure 8 
presents the predicted SMP outcomes for August 15. The conventional ENN model forecasts SMP 
with a MAPE of 6.16%, while the proposed ENN/IPOA model achieves a lower MAPE of 3.86%, 
indicating improved prediction accuracy. 

 
Fig. 8: Outcomes of the System Marginal Price Prediction for August 15 

6.4. Day Prediction When Fréchet Distance is 4 
Days not classified under the previous FD categories are considered to have a FD of 4. Figure 9 
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illustrates the predicted SMP for January 19, which serves as a representative example of typical 
days. The conventional ENN model predicts SMP with a MAPE of 2.46%, whereas the proposed 
ENN/IPOA model attains a lower MAPE of 1.28%, demonstrating enhanced forecasting precision. 

 

Fig. 9: Outcomes of the System Marginal Price Prediction for January 19 

7. Conclusion 
Electric energy plays a vital role in enhancing national prosperity and driving economic 

development. It differs from other energy carriers due to its unique characteristics, namely the 
requirement for real-time balance between supply and demand and the impracticality of storing it 
in large quantities. Ensuring a reliable electricity supply remains a primary objective for sector 
managers, given the significant economic losses associated with service interruptions. Historically, 
the substantial investments required for electricity generation, transmission, and distribution 
justified the establishment of government monopolies in the industry. In such monopoly markets, 
electricity pricing is determined according to government social and industrial policies, taking into 
account energy costs, productivity, and the structure and type of production. In this study, a novel 
approach based on a modified ENN was proposed for day-ahead SMP forecasting using long-term 
historical data. An enhanced version of the POA was employed to optimise the modified ENN. The 
discrete Fréchet distance was applied to long-term input variables, which were further augmented 
with temporal covariates, including seasonal indicators (summer/winter) and categorical day-type 
classifiers (weekday/holiday). Fifteen years of predicted load and actual SMP data for Korea were 
utilised, and the outcomes were validated against a non-optimised model. The results 
demonstrated that the proposed approach outperforms traditional forecasting models in accurately 
predicting SMP.  
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