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Abstract: Main motto of ship routing and scheduling is to reduce the total 
transportation cost of each ship or vessel without interrupting the demand 
and supply. In this study, we have proposed a ship routing and scheduling 
model for commercial ships where, to ensure unhindered demand and 
supply of products at various ports in a fixed time frame, the dynamic 
demand and supply of each port were considered under a fuzzy 
environment. Additionally, simultaneous loading and unloading and a 
fixed load factor is used to minimize port time and reduce risks, and this 
aspect of our work makes it realistically inclined. We also show, in our 
work, speed optimization to reduce fuel consumption and carbon 
emission. In practice, cost parameters cannot be always determined, it 
fluctuates at a certain range from time to time. We have treated the 
imprecise cost parameters as triangular fuzzy numbers. With a view to 
working with the developed model, a modified genetic algorithm (MGA) 
with a new selection technique, namely an in-vitro-fertilization-based 
crossover, and a generation-dependent mutation is proposed. The 
proposed sustainable ship routing algorithm with dynamic demand and 
supply in an uncertain environment gives a novelty in the literature. 
Another novelty is incurred through the proposed MGA in the heuristic 
search algorithms. This algorithm has produced numerical results 
superior to those of other heuristic algorithms. We have also established 
the efficiency of the proposed algorithm through statistical experiments. 
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1. Introduction   

Shipping industries play an important role in the growth of the economy of a 
country, and forms a core part of its trade. In the 20th century, the maritime 
transportation grew exponentially. Bulk cargo is generally moved either by sea, or by 
road, or, by air. Seaborne trade is the cheapest form, and it has spread to 89.6% of 
total global trade in terms of volume and 70.1% in terms of value in the recent years. 
In ship routing, each ship starts its journey from initial ports at the beginning of the 
planning horizon and visits from one port to another port with its containers. A ship 
visits a set of ports within any planning horizon, and at each of these ports some 
loading/unloading operations are carried out. To transport the cargos, a 
heterogeneous fleet of ships are used. There are a fixed capacity and sailing speed for 
each individual ship. This model aims to design appropriate shipping routes and 
schedules to minimizing the costs associated with transportation. The present 
investigation considered heterogeneous ships with a variety of capacities. 
Determining the navigation of ships or vessels in the maritime environment is a ship 
routing problem that is similar to the vehicle routing problem on land. Some of the 
challenges in ship routing and scheduling are as follows: 
1.  Because a trip may last for numerous days, each ship has a fixed ‘time window’ to 

operate at the port. A fixed time is allotted to each ship to complete the operation 
(loading/unloading) at the port. 

2. A linear ship route is not always possible because of several factors. 
3. Sometimes two captains may not agree on the same route for the same container 

for several reasons. 
4. Because of variable weather conditions, maritime transport is highly uncertain. 

Calculation of the traveling time and cost is difficult because the travel time is 
affected by the wind speed, direction, and current.      
Commercial ship operations are categorized as follows: 1) linear, 2) tramp and 3) 

industrial. Similar to bus transport, a linear operation in sea involves visiting all ports 
in its route, and ending at the destination port. Tramp ships are analogous to taxis, 
and their goal is to maximize profit while ensuring unhindered demand and supply of 
products. Industrial shipment minimizes the cost of shipping products by using the 
best route. Cargo is allotted to ships at the source port, which is then transported to 
the destination. Industrial shipping is of two types, namely cargo routing and 
inventory routing. The cargo routing problem is specified by the time frame for 
loading and unloading operations, and the demand and supply at specific ports may 
not be fixed. By contrast, in the inventory routing problem, the product requirement 
at a particular port is fixed. In this research, we have focused on the cargo routing 
problem. 

In practice, the demand and supply of products at the port are not fixed, it varies 
from time to time. To satisfy this condition, the loading/unloading operation of some 
products is determined spontaneously at the port according to the demand/supply.  
Because of uncertain market conditions, dynamic demand/supply is typical. Loading 
and unloading operations are performed simultaneously to optimize the port time as 
well as port congestion. In this study, we considered those operations simultaneously 
where there is spontaneous and simultaneous loading/unloading. The traveling costs 
depend on various factors, such as the geographical areas, the weather conditions 
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during the sailing period, and the product being transported, and hence are 
considered as vague or fuzzy in this model. We have thus worked to minimize the 
shipping cost and maintain sustainability keeping uncertainty in mind, at the same 
time ensuring that all cargoes are lifted from the loading port and discharged at the 
unloading port. This model used container-based cargo to transport goods. Risk 
factors such as, thunderstorms, tsunamis, icebergs, and piracy, which depends on the 
time period of sailing and choosing the routes, are also considered as fuzzy numbers. 
The total risk is considered to be less than the maximum risk which is assigned for 
the entire trip of that ship. It is this fuzzy approach renders the problem realistic. 

 1.1. Motivation  

  In ship routing and scheduling problems, a ship with a fixed capacity starts its 
voyage and visits a set of ports in a fixed time frame to satisfy the demand and supply 
of those ports. A port can be visited by only one ship at a particular time. De et al. 
(2017) considered numerous sub-time window concepts in ship routing and 
scheduling problems. The travelling time of a ship is the time to travel from one port 
to another port and its operation time is the time needed mainly for loading and 
unloading. However, within a fixed time frame, due to lack of proper scheduling of 
ships, there is a delay in cargo transportation from the origin port to the destination 
port.  A penalty cost is imposed for early/late arrival or loading/unloading delay. If 
any ship exceeds the fixed time frame, it had to pay a penalty calculated according to 
the additional hours it operates outside the fixed time frame. In this model, loading 
and unloading operations of various goods is performed simultaneously but 
unloading operation from a ship is performed before the loading operation starts. 
Here the main research motive is total cost minimization and optimum path 
determination for an industrial ship routing and scheduling in a fixed time frame, in 
which risk is minimum in a sustainable environment but in uncertain market 
conditions. Because of COVID-19, social behavior as well as demand and supply 
fluctuate randomly, affecting the shipping industry. Imran et al. (2020) designed a 
ship routing and scheduling model for static demand and supply, but the model is not 
robust in uncertain or dynamic situations. Our second research motive is the 
facilitating the transport of cargo whose demand and supply are determined 
dynamically. Yang et al. (2021) designed a tramp ship routing model to address port 
congestion because of static demand and supply. The result revealed that dynamic 
demand and supply reduce port congestion and render the system robust. Next, we 
focused on container-based cargo shipping to minimize the cost and path of travel. 
Container-based shipping provides an end-to-end approach to customers and 
shipping companies.  

      Finally, we focused on increasing the efficiency and effectiveness of the 
solution method. In this study, we develop a novel selection technique and 
generation-dependent mutation to achieve a better solution. A nature-based heuristic 
algorithm requires less time and computational cost. Considering fuzzy numbers, we 
introduced uncertainty or dynamic attributes to the model and adopted the 
possibility and necessity approach by using the graded mean integration value 
defuzzification method. 

Thus, we can once again the novelties of the proposed study are as follows: 
We developed a dynamic cargo ship routing and scheduling algorithm under 

uncertain environments. 
To maintain sustainability conditions, a novel mathematical function was 

incorporated to study the fuel consumption corresponding to the total carbon 
emission and the limitations of the journey considered. 
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We developed an optimal route design with a maximum allowable risk for that 
trip. 

A novel GA (new selection, crossover, and mutation strategies introduced) was 
developed to address the proposed model. 

We considered traveling cost and risk factors as fuzzy values for uncertain 
environment. 

The rest of this paper is organized as follows: Section 2 describes studies relevant 
to the present investigation. Section 3 describes mathematical preliminaries. Section 
4 discusses the proposed dynamic ship routing model. The defuzzification of the 
proposed model is presented in Section 5. In section 6, a modified GA (MGA) is 
presented. Section 7 illustrates the outcome of numerical experiments. Statistical test 
significance is discussed in Section 8. Section 9 provides results and discussions. 
Managerial insights are provided in Section 10. Finally, conclusions and future scope 
are presented in Section 11.  

2. Literature Study  

The ship routing and scheduling problem (SRSP) is similar to the traveling 
salesman problem (TSP) for cargo on land. Bausch et al. (1998) was the first to 
develop a short-term ship routing and scheduling model. Subsequently, numerous 
studies have focused on ship routing and scheduling problems. Psaraftis (2019) 
described a few conceptual hypotheses for the SRSP. However, the study did not 
provide any practical implementations derived from these. Alfandari et al. (2019) 
proposed a weekly demand service between a pair of ports for barge containers using 
a liner service to maximize the profit. However, transport delays may occur in liner 
shipping for certain routes because of uncertain weather conditions. Rabbani et al. 
(2019) described a model to determine the best route to minimize the shipping costs 
and carbon emissions and maximize job creation in ships and ports. In this study, 
variable speed was considered. Cost minimization and job creation maximization 
contrast each other. Noshokaty (2021) used information technology in tramp ship 
routing and scheduling problems to address commodity forecasting. In this model, 
the method of solution increases the time complexity, when all constraints are 
considered in commodities forecasting. Zhao et al. (2019) described how operation 
measures and objectives depend on fuel prices and vessel loads. To generate profits, 
the speed of a vessel is decreased for carrying a higher vessel load. This scenario 
sometimes results in missing the time window because of the low-speed voyage. 
Homsi et al. (2020) described the generation of elementary routes for tackling 
routing problems related to industrial and tramp ships. However, load-dependent 
fuel consumption, sea condition, and emission-related vital points were not 
considered there. Liqan et al. (2020) considered ocean currents for speed 
optimization to minimize the total fuel consumption. However, this optimization 
model had been tested for only one ship, and hence the results cannot be exactly 
generalized. Numerous algorithms have been proposed to optimize ship routing 
problems, and each algorithm has some pros and cons. Laura et al. (2016) used 
algorithms, such as the Dijkstra’s algorithm, dynamic programming, and iterative 
methods, to solve ship route optimization problems. These solution methods are 
problem-dependent, and each method has advantages and disadvantages. These 
methods are computationally expensive for NP-hard problems. De et al. (2017) 
described a hybrid particle swarm optimization (PSO) algorithm to solve time-
window-based ship routing problems with multidimensional features. In this study, 
PSO marginally increases the computational time. Wang et al. (2018) proposed a 
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hybrid mutation operator to maintain the population diversity in ship routing 
solutions. This method requires a long time to converge to the optimal solution. 
Alhamad et al. (2019) developed a tabu search method to solve the ship routing 
problem and revealed that if the problem size increases, the execution time increases 
drastically. Fan et al. (2019) used a variable neighborhood search algorithm to solve 
tramp scheduling, which revealed moderate computation time to generate optimal or 
near-optimal solutions. Roy et al. (2020) proposed a real-life in-vitro-fertilization 
(IVF)-based crossover in a GA to provide a solution to the TSP. In this study, the IVF 
crossover provided the concepts of having three parents and diversified the solutions. 
Pratap et al. (2019) described their own ship routing and scheduling model without 
considering the relationship between carbon emissions with fuel consumption in 
2019, Fan et al. (2019) proposed speed optimization in tramp shipping where they 
have discussed about how to reduce greenhouse gasses. According to United Nations 
Conference on Trade and Development (2018), sustainable shipping can reduce 50% 
of the world’s carbon dioxide (CO2) within the year 2050 by using slow steaming and 
alternate fuel. Zhang et al. (2021) described fuel consumption as a black-box concept. 
However, this study did not provide a transparent fuel consumption concept. Lan et 
al. (2020) described various carbon emission policies and presented a comparative 
analysis of these policies. However, the carbon emission policies sometimes reduce 
the profit of the shipowner. Fan et al. (2019) described the process of multi-type 
tramp shop scheduling to minimize the total costs of shipping companies. However, 
real-time ship scheduling was not considered in this study. Wang et al. (2018) did not 
consider wave and wind disturbance, which considerably affects the ship route 
design. Sun et al. (2019) described the uncertain planning stage and demand–supply 
aspects of customers in real time, but only the logistic network forward flow was 
considered; reverse flows were not considered. Maity et al. (2018) introduced a 
rough set-based GA, in which an age-dependent selection technique and age-oriented 
min point crossover was considered. However, this method works with both a high 
computational time and a high amount of computational resources. Dong and Bain 
(2020) described a hybrid A* and GA to solve ship pipe route design. This hybrid 
algorithm requires considerable execution time. Aktar et al. (2020) proposed the use 
of type-2 fuzzy and fuzzy random data to solve a four-dimensional (4D) TSP. In this 
study, small-size data sets are used. The use of large size data sets becomes 
computationally expensive. 

3. Mathematical Preliminaries  

 In this study, we presented preliminary fuzzy number concepts and their 
membership values and the defuzzification technique required for the proposed 
model. 

3.1. Triangular Fuzzy Numbers 

Here, 
~

( , , )A p q r  is a normalized triangular fuzzy number (TFN), which is a 

subset of S (real numbers). It’s membership function is given as follows (Figure 1): 



Das Das et al./Decis. Mak. Appl. Manag. Eng. 5 (2) (2022) 329-361 

334 

~

0,

,

( )

,

0,

A

x p

x p
p x q

q p
x

s x
q x s

s q

x s







  


 

  
 




                                                                                               (1) 

 
 
 
 
 
 
 
 

     

 
 
 
 

      Figure 1. Graphical representation of Triangular Fuzzy Number 

3.2. Fuzzy Possibility and Necessity Approach  

Assuming 
~
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~
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p
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For a TFN 
~

1 2 3( , , )B b b b  has three parameters 
1 2 3b b b   . By using (1), the 

membership function ~ ( )
B

x is expressed as follows: 

~

1
1 2

2 1
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( ) ,

0, otherwise
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x b
for b x b

b b

b x
x for b x b

b b



  




  






                                                                             (5) 

From the aforementioned definitions, the following lemmas can easily be derived: 

       Lemma 1. If 
~

1 2 3( , , )B b b b is a TFN with 0 < 
1b  and d is a crisp number, then  

       
~

1pos ( < d)p   , if    1
1

2 1

d b

b b






  .       

       Lemma 2. If 
~

1 2 3( , , )B b b b is a TFN with 0 <
1b  and d is a crisp number, then  

       
~
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1

3 2

1
b d

b b



 


 .              

       Lemma 3. If 
~
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       Lemma 4. If 
~
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       then 
~ ~

1nes ( < )B E  if   
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b e

e e b b



 

  
. 

     where 
1  is a predefined possibility. 

3.3. Defuzzification of the fuzzy number by using graded mean integration  

 
The fuzzy number graded mean integration method with the integral value of 

graded mean 
1 -level of the generalized fuzzy number was used for defuzzification. 

Assuming 
~

B  is a generalized fuzzy number, then the graded mean integration value 

(GMIV) of 
~

B  is denoted by the following equation: 
1~

1 1

0

P( )= {(1 ) ( ) ( )} /B x u L x uR x dx x dx   . 

            
1

1 1

0

=2 {(1 ) ( ) ( )}x u L x uR x dx   .                                                                (6)                                                     
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Where [0,1]u  

if,  1u  , an optimistic value. 

 if, 0u  , a pessimistic value. 

and if, 0.5u  , moderately optimistic value. 

Using the GMIV of TFN 
~

1 2 3( , , )B b b b Equation (6) becomes a crisp   value  

1 2 3[(1 ) 2 ] / 3u b b ub   .  

When  0.5u  , the expression becomes 1 2 3

1
[ 4 ]

6
b b b  . 

4. Proposed Dynamic Ship Routing Model 

To develop the proposed model, a set of ships, a group of ports, and a set of 
products were considered. Typically, a ship visits some of the ports to ensure 
unhindered demand and supply of those ports within a time frame. In this model, a 
ship starts its journey from a port, visits several ports, and ends its journey at the 
destination port, which is neither the starting port nor a visited port. For a ship, 
exceeding the given time window results in a penalty cost. Loading and unloading are 
performed at the port, but the unloading operation is performed before loading. In 
practice, the cost may not be deterministic, is imprecise, and considered as fuzzy 
parameters.  

The model was developed by using various dependent and independent variables 
and several constraints. The assumption of this model are as follows (Figure 2). 

 

 

Figure 2. Graphical representation of the proposed model  

 

4.1. Assumptions of the model 

To construct the model mathematically, we assumed the following points:  
1. A ship visits a set of ports in its voyage in a fixed time frame. 
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2. We consider heterogeneous ships for this model. Each ship has a different 
capacity. 

3. A container contains only one product at a time. It has a particular demand 
port and supply port. In between these two ports, containers cannot be 
unloaded from the ship. 

4. A ship sails at a certain speed in which fuel consumption is minimum and it 
does not violate the time frame. The total carbon emission does not exceed 
the maximum carbon emission index.  

5. Costs and risks are not fixed, but they vary in a certain range. However, the 
total risks do not exceed the maximum allowable risk for that route.  

6. Ship bunkering, cleaning, and maintenance are performed at the operation 
time at the port if required. 

7. On a weekly basis, each ship visits the port. Demand and supply vary 
dynamically at ports.  

4.2. Mathematical Model 

    Mathematical indices and parameters are stated in Table 1. Mathematical 
formulations are given below. The indices obtained from De et al. (2017) work 
partially. 

Table 1. Symbol and indices  

     Indices Sets 
  

Symbols Descriptions Symbols Descriptions 

,l m  Time period L  Time periods set 

s  Ships S  Ships set 
 ,p q  Ports  P  Ports set 

 r  Products   R  Products set 

Parameters 
 

Symbols Descriptions 

pqD  Distance between port p and port q. 

A

plT  The beginning of the time window at port p in the time period l. 

        
B

plT  The ending of the time window at port p in the time period l. 

 prC  Operational cost (loading/unloading) for a single unit of product r at 
port p. 

prT   The loading/unloading time required for single unit of product r at 
port p. 

   plrW  The demand of product r at port p in time period l. 

  pqsC  The transportation cost from port p to port q for ship s. 

slE  Storage capacity of ship s in time period l. 

prY  Total storage capacity associated with the depot at port p for the 
product r. 

 prU  The setup time required for operation (loading/unloading) at port p for 
product r. 
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 plC  Penalty cost per hour, associated with operation delay in time l at port 
p. 

       
sH  Carbon emission per hour for ship s. 

        g  Constant (Relationship constant of speed and fuel consumption). 

       
sf  Fuel consumption rate per hour for ship s. 

maxe  Maximum carbon emission for that trip. 

maxB  Maximum bunker consumption for that trip in crushing speed. 

prJ  

1, if product r has a supply at port p. 
2, if a demand for product r at port p. 
0, if no demand/supply for product r at port p.            
   

 
The following binary variables were assumed: 
 

1,  if ship  began its operation at port  in 

     time  and then travel from port  to 

     port  and initiate its operation at port  

     in time .

0,  otherwise;  , ; , .

plqms

s p

l p

X q q

m

l m L p q P





 



 

 

  

   

1,  if product  is loaded/unloaded in ship  at port  

    in time period . 

0,             otherwise;  ;  ; ; .

plsr

r s p

O l

r R l L s S p P




 
    

 

 

1,  if finally ends its travel at port  after an operation 

    which is started at time  by ship . 

0,    otherwise;      ; ; .

pls

p

Z l s

l L s S p P




 
   

 

 
The following continuous variables were assumed: 

1

plt
:  The starting time of operation at port p in time period l;  ,l L p P  . 

 

   
E

plt
:  The operation ending time at port p in period l; ,l L p P  . 

   plN
:  Total operating time outside the time frame in time period l at port p;   

               , .l L p P    
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1

plsrQ   :  Total quantity of product r loaded/unloaded at port p from ship s in time l; 

                        ,l L p P  , r R , s S ; 
1

plsrQ = 0 if 
prJ = 0. 

    
ikcnt  :  i number of containers of kth type, where i=1,2,3,4,5,6,7; k=1. 

     
1

plsrI  : Total amount of product r available on ship s after an operation that  

                   

                started in time l while departing from port p; ,l L p P  , r R , 

                  s S . 

    
1

plrS : The stock level at port p of product r in time period l; ,l L p P  , r R . 

     pqsV : Velocity of ship s while traveling from port p to port q. ,p q P ; s S . 

              pqsV = 0 if 0plqmsX  and p = q. 

    Rf pq : Risk factor between port p and port q;  ,p q P . 

     
maxr : Maximum risk on that trip. 

 
Objective function: 

1

, ,

pqs plqms pr plsr plsr pl pl

p q P l m L s S p P l L s S r R p P l L

minimize C X C O Q C N
        

     (7)

    Equation (7) minimizes the traveling cost, operation cost, and penalty cost. 
The constraints are as follows: 

          1plqms

p P l L s S

X
  

        ,q P m L                                                          (8) 

Constraint (8) represents that at least a single ship can operate in port p at the 
given time l.  

             1pls

p P l L

Z
 

                 s S                                                                        (9) 

Constraint (9) represents that ship s at some port p ended its route at the time l. 

             
1A B

pl pl plT t T              ,p P l L                                                         (10) 

Constraint (10) represents the time frame range. 

1 0
pqE

pl pm plqms

pqs

D
t t X

V

 
    

 

       , ; , ;p q P l m L s S                               (11) 

Constraint (11) represents that after finishing the operation at port p, ship s 

travels some distance between port p and port q with a fixed velocity. 

If 
1 0

pqE

pl pm plqms

pqs

D
t t X

V

 
    

 

, then the ship is not traveling in the sea, that is, 

0plqmsX  . 

  
1 1 0E

pl pl pr pr plsr

s S r R s S r R

t t U T Q
   

          ,p P l L    , s S          (12) 



Das Das et al./Decis. Mak. Appl. Manag. Eng. 5 (2) (2022) 329-361 

340 

 

Constraint (12) represents the sum of the setup time, starting time of operation, 
and that the total loading/unloading time is equal to the ending of each operation. 

                
E B

pl pl plt T N                                                                                                (13) 

Constraint (13) represents penalty time at port p. 
 

1

( 1)sl plsr plsr ik s l

p P r R

E O Q cnt E 

 

    ,p P l L    , s S  , r R            (14) 

Constraint (14) represents that after unloading the product from the ship, the 
empty space in the ship should be greater than the previous period. Products are 
unloaded container wise.  
 

1 1

( 1)p l sr pr plsr ik sl

p P r R

I J Q cnt E

 

     ,p P l L    , s S  , r R            (15) 

Constraint (15) represents that the quantity product r in ship s at port p in time 
period (l-1) is onboard and addition or removal of the quantity of product r 
loaded/unloaded at port p in time period l should not exceed the empty capacity of 
ship s in time period l. 
 

1 0sl plqms plsr

q P l L r R

E X I
  

       , ; , ;p q P l m L s S      , r R           (16) 

Constraint (16) represents that an upper bound of ship s of product r while sailing 
does not exceed the ship capacity. 
 

1 1 1

( 1) 0p m r pmsr pmr pmr

r R

S Q W S



                                                                          (17) 

Constraint (17) represents that the demand for each product r is satisfied at time 
m at port p. 
 

1

max

,

log( ) ( )E

pq pqs pl pl ps

p q P p P l L

g D V t t f B
  

      ,p P l L    , s S    (18) 

 
Constraint (18) represents that the total fuel consumption for ship s for a trip is 

less than maximum bunker consumption. Here, fuel consumption is considered as a 
logarithmic function of velocity. When ships travel from port p to port q, the fuel 

consumption is log( )pqsg V . 

                      
1( ) 0E

pl pl ps

p P l L

t t f
 

   

A certain fuel consumption occurs at the port when ship s is in port p. 
 

                   
1 0plr prS Y         ,p P l L    , r R                                           (19) 

 
Constraint (19) represents the storage capacity of port p for product r. 

 

                          
max

,

Rf pq

p q P

r


                                                                                  (20) 



Solving fuzzy dynamic ship routing and scheduling problem through modified genetic… 

341 

Constraint (20) represents that the total risk achieved by the port is less than 
equal to the maximum risk on that trip. 
  

1

max

,

*( * log( ) ( ) )E

s pq pqs pl pl ps

p q P p P l L

H g D V t t f e
  

      p q , s S       (21) 

Constraint (21) represents the total carbon emission at port and sea, which is 
always less than the maximum carbon emission index for that trip. In the proposed 
model, we assumed speed to be a logarithmic function, which is appropriate for 
considering traveling time and carbon emission. 

                {0,1}plqmsX       , ; , ;p q P l m L s S      , p q                        (22) 

                 {0,1}plsZ            ,p P l L    , s S                                             (23) 

                  {0,1}plsrO          ,p P l L    , s S  , r R                             (24) 

Constraints (22) – (24) represent the binary variables. 

                0pqsV         , ; ;p q P s S P q                                                         (25) 

               
1 0plrS           ,p P l L    , r R                                                      (26) 

              
1 1,plsr plsrQ I        ,p P l L    , r R  , s S                                       (27) 

             
1 , ,E

pl pl plt t N       ,p P l L                                                                        (28) 

Constraints (25) – (28) represent the nonnegative constraints. 

5. Defuzzification technique for the proposed model  

The traveling costs and the risk factors are fuzzy numbers, which are denoted as  
~

( , )C i j  and 
~

( , )r i j respectively, where 
~

maxr  is the maximum risk level of a 

particular path. In the proposed model, the total traveling cost and risk are expressed 
as follows:  

~

, 1

~ ~

max

,

to minimize z = ( , )

subject to ( , )

M

i j

i j

M

i j

i j

C x x

r x x r













                                                                                     (29) 

 Where i jx x , i, j= 1, 2, ……, M. 

M = total number of nodes on that route. 

 5.1. Possibility Approaches (optimistic) 

By using Equation (2), we obtain the following objective and constants: 
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minimize F 

~

2

, 1

~ ~

max 2

,

 Subject to pos ( , )

pos ( , )

M

i j

i j

M

i j

i j

C x x F

r x x r







 
   

  


  
   

  





                                                                 (30) 

Where 
i jx x , i, j= 1, 2, ……, M. 

M = total number of nodes on that route. 

 where 
2 2,   are levels of possibility, respectively (predefined). 

Traveling fuzzy cost for a path is  
~

1 2 3( , ) ( , ) , ( , ) , ( , )C i j C i j C i j C i j , and 

        corresponding fuzzy risk is  
~

1 2 3( , ) ( , ) , ( , ) , ( , )r i j r i j r i j r i j , and 

       maximum risk  
~

max 1 2 3, ,r r r r  . 

The aforementioned problem is reduced by using Lemma 1 and Lemma 3 as 
follows: 

       to minimize  F 

1
2

2 1

3 1
2

3 2 2 1

Subject to 
F F

F F

r R

r r R R





 
  


 

   

                                                                                             (31) 

Where 
,

( , )
M

k i j k

i j

F C x x , k =1, 2, 3. 

  and 
,

( , )
M

k i j k

i j

R r x x , k =1, 2, 3. 

  Where i jx x , i, j= 1, 2, ……, M. 

   M = total number of nodes on that route. 
The objective function in Equation (31) becomes:  

 

1 2 2 1Minimize ( )F F F   

Subject to 3 1
2

3 2 2 1

r R

r r R R





  
 

  Here,  2 2,  are possibility levels (predefined). 

5.2. Necessity Approaches (pessimistic) 

By using Equation (3), we obtain the following objective and constants: 
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Minimize F  

~

3

, 1

~ ~

max 3

,

 Subject to nes ( , )

nes ( , )

M

i j

i j

M

i j

i j

C x x F

r x x r







 
   

  


  
   

  





                                                           (32) 

Where 
i jx x , i, j= 1, 2, ……, M. 

M = total number of nodes on that route. 

Traveling fuzzy cost for a path is  
~

1 2 3( , ) ( , ) , ( , ) , ( , )C i j C i j C i j C i j , and 

corresponding fuzzy risk is  
~

1 2 3( , ) ( , ) , ( , ) , ( , )r i j r i j r i j r i j , and 

          maximum risk  
~

max 1 2 3, ,r r r r  . 

The aforementioned problem is reduced by using Lemma 2 and Lemma 4: 
To minimize F 

      

3
3

3 2

3 1
3

2 1 3 2

Subject to 1

1

F F

F F

R r

r r R R





 
   


  

   

                                                                                  (33) 

Where 
,

( , )
M

k i j k

i j

F C x x , k =1, 2, 3. 

  and 
,

( , )
M

k i j k

i j

R r x x , k =1, 2, 3. 

  Where i jx x , i, j= 1, 2, ……, M. 

   M = total number of nodes on that route. 

 
 The objective function in Equation (33) becomes:  

3 3 3 2Minimize (1 )( )F F F    

Subject to 3 1
3

2 1 3 2

R r

r r R R





  
 

Here, necessity levels are 3 3,   (predefined). 

5.3. GMIV Approach 

By applying GMIV for the defuzzification on SRSP using Equation (29), we obtain 
the following equation: 
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To minimize 1 2 3

1
[ 4 ]

6
z F F F    

Subject to 1 2 3 1 2 3

1 1
[ 4 ] [ 4 ]

6 6
R R R r r r      

Here, we consider w = 0.5, for an optimal solution. 

6. MGA 

Holland (1975) was the first to propose natural and artificial system GA, which 
was subsequently used in natural evolution and optimization problems. Adaptive 
heuristic search algorithms evolved from GA. This algorithm used a random search 
technique to obtain an optimized result. Although random search is used, it is not 
random, and the previous information is used to direct the search in an appropriate 
search space to obtain optimum results. GA provides superior optimization when 
high dimensional search spaces and numerous variables are present. 

6.1. Proposed Bird’s nest building material selection technique  

To solve the ship routing and scheduling model through MGA, we proposed a 
novel Bird’s nest building material selection technique (BBMST) for selection. Not all 
birds excel at making nests. Hamerkop (Scopus umbretta), ruby-throated 
hummingbird (Archilochus colubirs), sociable weaver (Philetairus socius), baya 
weaver (Ploceus Philippinus), etc make good nests. Among these birds, “sociable 
weaver” birds select the best material for nest building, and they check the building 
material with their beak. We selected the best solution from all possible solutions set 
to obtain the optimum result in ship routing. 

In the BBMST algorithm, first, the fitness values of all chromosomes are 
calculated, and the minimum cost path, which is the main objective of this model, is 
implemented. In each iteration, we selected the minimum cost of the chromosomes, 
and based on the cost of other chromosomes, we calculated the threshold value. The 
probability of selection was randomly generated, which is between 0 and 1. If the 
threshold value is less than the probability of selection, then the current chromosome 
is selected, otherwise the minimum threshold valued chromosome is considered as 
fittest for the IVF crossover process.  

Let C[i][j] represent the traveling cost between i
 th port to j  th port, N is the set of 

ports, and pv is the total number of chromosomes. 
 

Algorithm1: BBMST selection process 

Require: Set of given port N and the size of the population is pv. 
Ensure: A set of fittest chromosomes. 
 
1. Begin 
2.        for ( i = 1 to pv) 
3.           judge fitness; 
4.        end for; 

5.        b = 
(minimum-fitness)chromosome ; 

6.           ;population ofAvgb fitness1   

7.         for(i= 1 to pv) 
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Algorithm1: BBMST selection process 

8.             generate a temporary population, where fitness < b1; 
9.            end for; 
10.             for(i= 1 to pv) 

11.              randomly select three edges Sj, j  (1, 2, 3) ; 

12.              generate  
ir  = (cost (Sj)/ fitnessi)  //cost(Sj) represents the traveling    

                                                                           cost between two end vertices/nodes of Sj . 
13.              R = random [0, 1];                         

14.              if (any two 
ir R ) 

15.                  select the chromosome i; 
16.              else 
17.                   select the chromosome b; 
18.            end for 
19.           End 

 

Figure 3. IVF Crossover 

6.2. IVF crossover  

In the proposed MGA, IVF is used for the crossover process. In the IVF process, 
three parents, namely one father (Pr1), one mother (Pr2), and a surrogate mother 
(Sr) are selected randomly, depending on their crossover probability (Pc) and bring 
them in mating pool, and two children were created, child1 and child2. First 
randomly generate a node (for example: ai) and place it at the first position at chid1 
and update the parents with ai. Next, the least cost valued node is selected from three 
parents in mating pool. Repeat the previous step until all the nodes are not selected 
and always check whether the same node is selected previously or not.  Similarly, the 
same steps are performed for child2. In the matting pool of GA, two new offspring are 
created with superior information, which is inherited from parents. The IVF is a 
parallel flow process, which receives the input portion of various parents from the GA 
population. The individuals are supplied by the IVF process. Figure 3 displays the IVF 
process in a pictorial form. The algorithm steps of IVF crossover are given below: 
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Algorithm2: IVF crossover 

1. Begin 
2. Choose three parents (Pr1, Pr2 and Sr) randomly from mating pool 

depending on crossover probability Pc. 

3. Nodes in three parents arePr1: (a1, a2, …, aN), Pr2: (r1, r2, …., rN) and Sr (s1, s2, 
….., sN ). 

4. Randomly choose a node ai. 
5. Place that ai node at the beginning of child1 and update the three parents. 
6. In child1 place ai at the first position. 
7. Find the minimum cost between (ai, a1), (ai, r1) and (ai, s1). 
8. Choose the minimum cost node and place it to the next position of child1 and 

update parents. 
9. Repeat steps 7 and 8 until all nodes are not selected without repetition of any 

node. 
10. Repeat the same steps for child2. 
11. End 

     

6.3. Generation-dependent mutation  

After the crossover process, the algorithm goes through the mutation process. In 
this algorithm, we used generation-dependent mutation. The mutation prevents the 
solution to be trapped in a local minimum and premature convergence. The mutation 
maintains genetic diversity in the population. In a population, a random change in 
some of genes result in one chromosome. This phenomenon produces a novel 
offspring with a new genetic structure. Mutation helps escape from local minima, find 
the global minima, and maintain the diversity of the population. The probability of 

generation-dependent mutation (
mp ) is expressed as follows: 

Number of current generation
m

k
p  ,  [0,1]k  

   When the number of generations increases, 
mp  decreases normally. 

6.3.1. Mutation Process   

The proposed ship routing and scheduling model is a node-dependent problem. 

To mutate the chromosome X = (
1 2, ,...., Nx x x ), (

1 2, ,...., Ny y y ), to find the mutated 

node *mT p N , where N = total number of nodes in a chromosome. If 2 mr p , 

2r random [0, 1], then the corresponding chromosome is to be selected for 
mutation. 

    First, we generate two distinct numbers ,i jx x randomly between [1, N]. To 

obtain mutated solutions, 
ix and ,jx  are interchanged. The same process repeated  

times to obtain the best offspring. 
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Algorithm3: Generation-dependent mutation 

1.       Begin 
2.       Set g= number of the current generation. 

3.        
( )

m

k
p

sqrt g
 , [0,1]k  

4.        Calculate *mT p N ; // the total number of mutated nodes in the  

                                                       // chromosome. 
5.             for (i =0 to pop-size)        //pop-size = population size. 

6.              2r  = rand (0, 1); 

7.             if( 2 mr p ) 

8.                 Select current chromosome; 
9.                   c = rand [1, N]; 
10.                   d = rand [1, N]; 
11.                  if (c ==   d) 
12.                       Goto step 9; 
13.          end for 
14.          for (j = 1 to N)                  // N =total number of nodes of a route . 
15.                 if (x [j ] ==  c) 
16.                       s = j ; 
17.                 if(x[j] == d) 
18.                         t = j ; 
19.                       x[s] =d  ;               //replace c by d. 
20.                       x[t]= c  ;               //replace d by c. 
21.          end for 
22.          Repeat steps 8 to 20 up to T times. 
23.          end if 
24.         end for 
25.         End  

Because the process is an NP-hard problem, the exact approach may cause high 
computational time. Meta-heuristic approaches provide an optimal result in a 
reasonable time. In this study, we proposed a modified GA-based BBMST, in vitro 
fertilization, and generation-dependent mutation. 

 

6.4. Complexity Analysis  

We considered P as the initial population, N as the number of nodes, g as the 

number of generations, 
cp  as the probability of crossover, 

mp  as the probability of 

mutation, and c mp p . Therefore, the time complexity of three operations, 

selection, crossover, and mutation are O( PN ), O(
2

cpP N ), and O(
2

mpP N ), 

respectively. For the proposed algorithm, complexity is as follows: 
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6.4.1. Time complexity  

Because the proposed MGA consists of BBMST selection, IVF crossover, and 
generation-dependent mutation, the time complexity of this algorithm is the 

maximum time complexity of these three processes. O( PN ), O(
2PN ), and O(

2PN ) 

are the time complexity of three processes. Therefore, O(
2PN ) is the time 

complexity of the proposed algorithm. 

6.4.2. Space complexity  

In the proposed MGA (Figure 4), the total space is considered as the population 

multiplied by the number of nodes, that is, PN .  As p > N, the space complexity of the 

proposed algorithm is O( PN ). 

 

 

Figure 4. Flowchart of MGA 
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7. Numerical Experiments  

The optimum value is obtained by running this algorithm up to 500 generations 
considering the crossover probability as 0.61 and considering generation-dependent 
mutation. We used a 2.40 GHz i7 processor with 12GB of RAM with Windows 10 for 
our numerical calculations. The use of fuzzy theory renders the model robust. 

In this model, we considered 3 ships and 15 ports. We collected data from the 
Haldia Port and traveling cost in 10k of each cell value in matrix, which is expressed 
as follows (Table 2): 

Table 2. Input Data: Deterministic Traveling Cost Matrix  

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 ∞ 25 28 28 30 26 15 37 40 30 41 23 31 4 35 
2 17 ∞ 20 28 25 14 30 14 28 4 37 25 32 50 11 
3 14 8 ∞ 10 25 15 9 32 40 30 31 47 22 33 45 
4 28 30 7 ∞ 20 25 30 35 22 37 11 33 40 21 32 
5 37 22 35 30 ∞ 20 25 30 9 28 33 44 15 27 19 
6 25 30 25 8 28 ∞ 32 40 32 30 15 34 27 41 11 
7 28 25 30 22 37 40 ∞ 10 32 20 36 45 8 25 13 
8 20 5 32 40 35 25 40 ∞ 22 37 10 37 29 15 50 
9 30 40 35 25 20 22 37 32 ∞ 28 42 31 30 7 33 

10 28 30 28 20 11 32 37 40 30 ∞ 36 22 32 23 16 
11 12 24 37 29 52 19 37 6 42 31 ∞ 25 14 36 39 
12 35 21 13 46 34 29 37 28 19 30 17 ∞ 16 34 29 
13 42 36 31 26 25 12 30 24 19 27 36 23 ∞ 7 24 
14 38 15 24 42 18 29 46 27 33 19 19 45 25 ∞ 31 
15 41 29 11 28 41 27 34 29 9 28 16 45 29 34 ∞ 

The loading and unloading operation cost for each product and penalty cost for 
the outside time from timeframe for each port and cost in 1 k of each cell of the 
matrix is presented in Table 3. 

Table 3. Operation Cost and Penalty Cost Matrix 

Operation Cost for Each Product 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 15 8 11 13 12 7 14 9 10 8 7 14 9 12 12 

2 8 8 12 7 9 8 9 9 12 9 9 9 8 9 9 

3 7 9 8 8 7 7 8 7 9 10 6 9 13 9 9 

4 10 8 15 5 6 10 9 7 10 12 8 7 13 8 7 

Penalty Cost of Ports 

 15 12 10 16 18 12 8 10 9 14 7 8 10 9 11 

By using the deterministic traveling cost presented in Table 2, operation cost and 
penalty cost presented in Table 3, we obtained the results for the MGA and GA to 
obtain the optimum cost of the proposed algorithm. The final path for the four ships 
and their optimum cost for both the algorithms are presented in the given Table 4. 
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Table 4. Result for Deterministic Model  

SI 
NO 

GA MGA 
Operation 

Cost 
Penalty 

Cost Final Path 
Traveling 

Cost 
Final Path 

Traveling 
Cost 

1 
2-12-6-4-1-10 146 

2-6-4-1-12-
10 

131 5720 22 

11-8-7-5-9 109 7-8-11-5-9 97 4080 40 
14-15-3-13 83 14-3-13-15 79 2843 41 

2 

11-1-8-2-10-
12 

156 
11-8-1-2-10-

12 
112 5769 22 

13-4-5-15-7 144 4-5-13-15-7 138 3269 21 
3-6-9-14 105 14-3-6-9 108 3605 60 

3 
3-2-10-5-8-4 121 10-5-2-8-3-4 117 6293 44 
9-14-11-12-6 84 12-9-14-11-6 72 3602 38 

13-15-1-7 120 1-7-13-15 74 2748 21 

4 

4-2-15-13-7 128 2-15-13-4-7 124 4173 9 
8-12-11-9-5-

14 
178 

12-11-8-5-9-
14 

112 4751 50 

6-1-10-3 115 10-3-6-1 108 3719 44 

5 

2-13-5-15-3 101 13-5-2-15-3 83 4695 53 

12-9-1-8-11-6 140 
12-9-8-11-1-

6 
124 4856 50 

7-14-10-4 91 7-14-10-4 92 3092 0 

6 

6-1-8-2-10 140 8-2-6-1-10 102 5272 12 
12-14-11-3-5-

4 
170 

12-3-5-14-
11-4 

141 4667 54 

7-13-15-9 83 7-13-15-9 83 2704 37 

7 
11-2-1-9-4 134 9-11-1-2-4 135 4678 40 

12-7-8-14-6 116 12-7-8-14-6 116 4208 10 
13-15-3-10-5 113 15-3-13-10-5 100 3757 53 

8 
2-4-11-12-10 106 4-12-11-2-10 95 4421 10 

6-15-3-8-9 106 8-3-6-15-9 97 3890 60 
13-14-5-1-7 105 1-14-5-13-7 95 4332 33 

9 2-10-9-5-7 107 2-10-5-9-7 89 5223 40 

 
12-6-15-4-14 127 12-15-6-4-14 123 2933 10 
1-3-8-11-13 126 8-11-1-3-13 114 4487 53 

To simulate practical applications, we obtained the fuzzy traveling cost matrix. 
Here, the triangular cost fuzzy matrix is used for the proposed model as follows 
(Table 5): 
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Table 5. Input Data: Fuzzy Cost Matrix 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 ∞ 
(22, 
24, 
27) 

(25, 
27, 
29) 

(24, 
28, 
30) 

(31, 
33, 
35) 

(24, 
27, 
29) 

(13, 
16, 
18) 

(32, 
34, 
36) 

(39, 
41, 
42) 

(29, 
31, 
33) 

(40, 
43, 
45) 

(20, 
22, 
24) 

(30, 
32, 
34) 

(15, 
16, 
18) 

(31, 
34, 
38) 

2 
(16, 
18, 
20) 

∞ 
(20, 
22, 
24) 

(24, 
26, 
29) 

(23, 
25, 
27) 

(13, 
15, 
17) 

(29, 
31, 
33) 

(11, 
14, 
16) 

(26, 
29, 
31) 

(14, 
16, 
17) 

(36, 
39, 
40) 

(23, 
26, 
28) 

(31, 
33, 
35) 

(47, 
50, 
52) 

(11, 
13, 
15) 

3 
(13, 
15, 
17) 

(16, 
17, 
20) 

∞ 
(9,  
12,   
14) 

(23, 
26, 
28) 

(14, 
16, 
18) 

(17, 
19, 
21) 

(29, 
31, 
33) 

(36, 
39, 
42) 

(27, 
31, 
34) 

(28, 
31, 
35) 

(42, 
45, 
48) 

(45, 
48, 
50) 

(18, 
21, 
23) 

(40, 
43, 
45) 

4 
(24, 
27, 
29) 

(25, 
28, 
31) 

(16, 
18, 
19) 

∞ 
(19, 
21, 
23) 

(24, 
26, 
27) 

(29, 
31, 
33) 

(30, 
33, 
35) 

(18, 
21, 
23) 

(34, 
36, 
37) 

(9,  
12,   
14) 

(29, 
32, 
34) 

(38, 
41, 
43) 

(21, 
23, 
25) 

(30, 
33, 
35) 

5 
(33, 
35, 
37) 

(21, 
23, 
25) 

(32, 
35, 
37) 

(28, 
30, 
33) 

∞ 
(20, 
22, 
24) 

(20, 
23, 
26) 

(31, 
33, 
35) 

(8,    
10,  
12) 

(27, 
29, 
31) 

(31, 
34, 
36) 

(42, 
45, 
47) 

(13, 
16, 
18) 

(26, 
29, 
31) 

(18, 
20, 
22) 

6 
(24, 
26, 
28) 

(29, 
31, 
33) 

(24, 
27, 
29) 

(16, 
19, 
21) 

(27, 
29, 
31) 

∞ 
(31, 
33,  
35) 

(39, 
41, 
43) 

(30, 
33, 
35) 

(25, 
28, 
31) 

(14, 
16, 
18) 

(33, 
35, 
37) 

(25, 
27, 
29) 

(38, 
40, 
42) 

(9, 
12, 
14) 

7 
(27, 
29, 
31) 

(24, 
26, 
28) 

(29, 
31, 
33) 

(21, 
23, 
24) 

(32, 
36, 
39) 

(40, 
42, 
43) 

∞ 
(9,  
11,   
12) 

(28, 
31, 
33) 

(19, 
21, 
23) 

(33, 
35, 
38) 

(42, 
46, 
48) 

(6,  
9,   

11) 

(20, 
23, 
25) 

(11, 
13, 
15) 

8 
(20, 
21, 
23) 

(15, 
19, 
21) 

(31, 
35, 
37) 

(37, 
39, 
41) 

(33, 
36, 
38) 

(23, 
25, 
27) 

(38, 
40, 
43) 

∞ 
(21, 
23, 
25) 

(35, 
38, 
40) 

(8,  
11,  
13) 

(32, 
34, 
36) 

(23, 
26, 
28) 

(13, 
15, 
18) 

(47, 
49, 
51) 

9 
(31, 
33, 
34) 

(36, 
38, 
40) 

(34, 
36, 
37) 

(24, 
26, 
27) 

(21, 
23, 
25) 

(20, 
23, 
25) 

(36, 
38, 
39) 

(29, 
31, 
33) 

∞ 
(26, 
29, 
30) 

(40, 
42, 
44) 

(31, 
33, 
35) 

(31, 
33, 
34) 

(6,  
8,    

10) 

(29, 
31, 
33) 

10 
(27, 
29, 
31) 

(30, 
32, 
34) 

(25, 
27, 
29) 

(19, 
21, 
23) 

(10, 
12, 
13) 

(31, 
33, 
35) 

(35, 
36, 
38) 

(39, 
41, 
43) 

(31, 
32, 
35) 

∞ 
(36, 
37, 
39) 

(19, 
21, 
23) 

(29, 
31, 
35) 

(22, 
24, 
26) 

(16, 
18, 
20) 

11 
(10, 
13, 
15) 

(23, 
25, 
27) 

(38, 
39, 
41) 

(25, 
28, 
32) 

(51, 
53, 
55) 

(19, 
21, 
23) 

(34, 
37, 
38) 

(17, 
19, 
21) 

(42, 
43, 
45) 

(29, 
30, 
32) 

∞ 
(24, 
26, 
28) 

(13, 
15, 
17) 

(32, 
35, 
37) 

(37, 
39, 
40) 

12 
(34, 
36, 
38) 

(22, 
23, 
24) 

(13, 
15, 
16) 

(44, 
46 

,48) 

(35, 
36, 
38) 

(27, 
29, 
31) 

(35, 
38, 
39) 

(27, 
29, 
30) 

(19, 
21, 
23) 

(28, 
29, 
31) 

(17, 
18, 
20) 

∞ 
(14, 
16, 
18) 

(32, 
33, 
35) 

(27, 
29, 
31) 

13 
(37, 
39, 
41) 

(36, 
38, 
40) 

(32, 
33, 
35 

(23, 
25, 
27) 

(24, 
26, 
28) 

(11, 
13, 
15) 

(29, 
31, 
33) 

(20, 
23, 
25) 

(19, 
22, 
24) 

(25, 
27, 
29) 

(32, 
35, 
37) 

(20, 
22, 
24) 

∞ 
(7,  
9,   

10) 

(23, 
25, 
27) 

14 
(35, 
37, 
39) 

(13, 
16, 
18) 

(23, 
25, 
27) 

(41, 
43, 
44) 

(17, 
19, 
21) 

(28, 
30, 
31) 

(42, 
44, 
47) 

(25, 
27, 
29) 

(29, 
32, 
34) 

(17, 
19, 
21) 

(15, 
18, 
20) 

(41, 
43, 
46) 

(24, 
26, 
27) 

∞ 
(32, 
33, 
35) 

15 
(39, 
41, 
43) 

(27, 
29, 
31) 

(10, 
12, 
14) 

(28, 
29, 
30) 

(38, 
41, 
43) 

(27, 
29, 
30) 

(31, 
33, 
35) 

(29, 
31, 
33) 

(7, 
10, 
11) 

(27, 
29, 
30) 

(15, 
17, 
19) 

(42, 
45, 
47) 

(25, 
27, 
29) 

(33, 
35, 
37) 

∞ 
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Table 6. Result for Fuzzy Model 

SI NO 
GA MGA 

Final Path 
Traveling 

Cost 
Final Path Traveling Cost 

1 
2-4-12-6-1-10 512.83 2-6-4-1-12-10 444.83 

5-7-8-11-9 305.83 7-8-11-5-9 305.17 
15-3-14-13 184.67 15-3-14-13 184.67 

2 
11-2-8-1-10-12 502.67 11-1-8-2-10-12 447.17 

13-4-5-15-7 380.00 4-5-15-13-7 373.67 
3-6-9-14 222.67 3-6-9-14 222.67 

3 
3-2-10-5-8-4 447.16 3-2-8-10-5-4 434.33 
9-14-11-12-6 266.17 12-9-14-11-6 251.33 

13-15-1-7 296.50 13-15-1-7 296.50 

4 
4-2-15-13-7 394.50 2-15-4-13-7 364.00 

8-12-11-9-5-14 631.17 12-11-8-5-9-14 436.34 
6-1-10-3 282.00 3-6-10-1 239.00 

5 
5-2-13-15-3 361.00 5-2-15-13-3 329.33 

8-12-11-8-1-6 514.00 12-9-8-11-1-6 442.50 
7-14-10-4 222.17 14-10-4-7 236.17 

6 
8-1-2-6-10 392.67 1-2-8-6-10 336.17 

3-14-11-12-5-4 535.50 4-11-12-5-3-4 536.67 
7-13-15-9 137.67 7-15-9-13 181.50 

7 
11-1-2-9-4 398.00 11-2-1-9-4 325.83 

7-8-14-12-6 362.83 12-7-8-14-6 327.83 
13-15-3-10-5 324.17 13-15-3-10-5 324.17 

8 
2-4-11-12-10 344.50 2-12-4-11-10 313.83 

6-15-3-8-9 279.00 6-15-3-8-9 279.00 
13-14-1-5-7 366.17 13-14-5-1-7 285.83 

9 10-5-2-9-7 352.33 2-5-9-10-7 342.33 

 
12-6-15-4-14 362.33 12-6-15-4-14 362.33 
8-11-3-1-13 350.83 3-1-8-11-13 312.50 

By using the fuzzy triangular cost matrix presented in Table 5, we calculated the 
final path for three ships and their optimum cost for our MGA and GA. The 
aforementioned table reveals the results for the fuzzy data (Table 6). 

Table 7 presents the deterministic risk matrix between every two ports. We 
considered a value between 0 and 1 as the deterministic risk factor. 
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Table 7. Input Data: Deterministic Risk Matrix  

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 ∞ 0.5 0.8 0.7 0.82 0.59 0.51 0.61 0.38 0.71 0.57 0.61 0.63 0.58 0.42 
2 0.78 ∞ 0.6 0.52 0.9 0.32 0.47 0.51 0.48 0.6 0.63 0.58 0.71 0.61 0.5 
3 0.56 0.7 ∞ 0.5 0.47 0.49 0.55 0.63 0.7 0.8 0.67 0.6 0.53 0.63 0.39 
4 0.61 0.77 0.73 ∞ 0.51 0.54 0.64 0.74 0.48 0.5 0.61 0.62 0.45 0.64 0.8 
5 0.48 0.67 0.55 0.68 ∞ 0.55 0.51 0.62 0.7 0.8 0.71 0.72 0.5 0.54 0.49 
6 0.39 0.57 0.66 0.68 0.88 ∞ 0.91 0.75 0.76 0.88 0.58 0.71 0.71 0.55 0.72 
7 0.73 0.52 0.7 0.53 0.71 0.56 ∞ 0.59 0.67 0.63 0.56 0.66 0.67 0.59 0.6 
8 0.78 0.54 0.67 0.69 0.58 0.73 0.55 ∞ 0.77 0.68 0.67 0.77 0.69 0.47 0.54 
9 0.61 0.56 0.47 0.66 0.64 0.83 0.66 0.88 ∞ 0.57 0.73 0.74 0.72 0.6 0.69 

10 0.49 0.63 0.56 0.59 0.63 0.81 0.72 0.48 0.49 ∞ 0.68 0.61 0.56 0.63 0.63 
11 0.53 0.68 057 0.58 0.7 0.49 0.55 0.57 0.58 0.72 ∞ 0.63 0.57 0.43 0.7 
12 0.5 0.76 0.62 0.62 0.63 0.66 0.71 0.44 0.57 0.61 0.6 ∞ 059 0.39 0.61 
13 0.49 0.48 0.67 0.63 0.59 0.51 0.55 0.47 0.49 0.5 0.7 0.78 ∞ 0.51 0.53 
14 0.47 0.54 0.64 0.72 0.76 0.66 0.56 0.73 0.61 0.57 0.45 0.48 0.47 ∞ 0.51 
15 0.63 0.7 0.73 0.51 0.69 0.82 0.48 0.6 0.63 0.58 0.49 0.7 0.46 0.51 ∞ 

Because risk factors are dependent on various weather conditions and other 
factors, it is appropriate to take risk factors as a fuzzy value instead of a crisp value. 
The table displays the fuzzy triangular risk factor between ports. In our problem, we 
obtained the TFN for the risk matrix.  
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Table 8. Fuzzy Risk Matrix 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 ∞ 
0.48, 
0.51, 
0.61 

0.75, 
0.81, 
0.85 

0.67, 
0.7, 
0.78 

0.79, 
0.83, 
0.87 

0.53, 
0.57, 
0.63 

0.47, 
0.5, 
0.56 

0.58, 
0.6, 
0.65 

0.35, 
0.37, 
0.4 

0.69, 
0.7, 
0.75 

0.53, 
0.56, 
0.61 

0.58, 
0.6, 
0.66 

0.6, 
0.64, 
0.69 

0.53, 
0.57, 
0.61 

0.39, 
0.41, 
0.44 

2 
0.75, 
0.77, 

08 
∞ 

0.58, 
0.59, 
0.63 

0.49, 
0.51, 
0.54 

0.87, 
0.91, 
0.92 

0.3, 
0.33, 
0.35 

0.45, 
0.48, 
0.5 

0.49, 
0.52, 
0.55 

0.46, 
0.49, 
0.51 

0.58, 
0.61, 
0.62 

0.61, 
0.63, 
0.65 

0.55, 
0.57, 
0.6 

0.69, 
0.72, 
0.73 

0.59, 
0.62, 
0.63 

0.49, 
0.51, 
0.53 

3 
0.53, 
0.55, 
0.59 

0.68, 
0.69, 
0.74 

∞ 
0.48, 
0.5, 
0.53 

0.45, 
0.48, 
0.49 

0.47, 
0.49, 
0.51 

0.52, 
0.54, 
0.57 

0.6, 
0.64, 
0.65 

0.68, 
0.71, 
0.73 

0.78, 
0.81, 
0.83 

0.65, 
0.66, 
0.68 

0.58, 
0.61, 
0.63 

0.5, 
0.54, 
0.55 

0.61, 
0.64, 
0.66 

0.79, 
0.81, 
0.84 

4 
0.59, 
0.62, 
0.64 

0.73, 
0.76, 
0.79 

0.7, 
0.74, 
0.77 

∞ 
0.48, 
0.52, 
0.55 

0.52, 
0.55, 
0.57 

0.62, 
0.65, 
0.67 

0.72, 
0.75, 
0.76 

0.46, 
0.48, 
0.5 

0.48, 
0.51, 
0.53 

0.59, 
0.62, 
0.64 

0.58, 
0.61, 
0.63 

0.43, 
0.44, 
0.46 

0.6, 
0.65, 
0.67 

0.47, 
0.48, 
0.51 

5 
0.45, 
0.47, 
0.5 

0.63, 
0.66, 
0.7 

0.53, 
0.55, 
0.57 

0.64, 
0.67, 
0.7 

∞ 
0.53, 
0.56, 
0.58 

0.49, 
0.52, 
0.53 

0.6, 
0.63, 
0.65 

0.68, 
0.71, 
0.73 

0.79, 
0.82, 
0.83 

0.7, 
0.72, 
0.74 

0.69, 
0.71, 
0.73 

0.48, 
0.51, 
0.53 

0.52, 
0.55, 
0.57 

0.46, 
0.48, 
0.5 

6 
0.35, 
0.38, 
0.41 

0.55, 
0.57, 
0.61 

0.62, 
0.65, 
0.68 

0.65, 
068, 
0.71 

0.86, 
0.88, 
0.9 

∞ 
0.89, 
0.91, 
0.93 

0.73, 
0.76, 
0.78 

0.73, 
0.75, 
0.78 

0.85, 
0.87, 
0.9 

0.56, 
0.59, 
0.6 

0.69, 
0.72, 
0.74 

0.69, 
0.73, 
0.74 

0.53, 
0.56, 
0.58 

0.69, 
0.72, 
0.74 

7 
0.7, 

0.74, 
0.78 

0.49, 
0.53, 
0.55 

0.68, 
0.71, 
0.74 

0.5, 
0.54, 
0.56 

0.68, 
0.72, 
0.74 

0.53, 
0.55, 
0.58 

∞ 
0.56, 
0.58, 
0.6 

0.65, 
0.66, 
0.69 

0.6, 
0.64, 
0.65 

0.53, 
0.55, 
0.58 

0.63, 
0.65, 
0.67 

0.65, 
0.68, 
0.69 

0.57, 
0.59, 
0.61 

0.58, 
0.61, 
0.63 

8 
0.75, 
0.77, 
0.8 

0.51, 
0.53, 
0.56 

0.65, 
0.68, 
0.7 

0.65, 
0.68, 
0.71 

0.56, 
0.59, 
0.61 

0.7, 
0.72, 
0.75 

0.52, 
0.56, 
0.58 

∞ 
0.75, 
0.78, 
0.79 

0.66, 
0.69, 
0.71 

0.65, 
0.68, 
0.7 

0.74, 
0.76, 
0.79 

0.66, 
0.68, 
0.72 

0.44, 
0.46, 
0.49 

0.52, 
0.55, 
0.57 

9 
0.58, 
0.61, 
0.64 

0.53, 
0.55, 
0.58 

0.45, 
0.48, 
0.5 

0.63, 
0.65, 
0.68 

0.62, 
0.65, 
0.67 

0.8, 
0.82, 
0.85 

0.63, 
0.65, 
0.68 

0.85, 
0.87, 
0.89 

∞ 
0.55, 
0.56, 
0.58 

0.7, 
0.74, 
0.76 

0.72, 
0.73, 
0.75 

0.7, 
0.73, 
0.75 

0.58, 
0.61, 
0.63 

0.66, 
0.68, 
0.7 

10 
0.45, 
0.48, 
0.52 

0.6, 
0.64, 
0.67 

0.53, 
0.55, 
0.58 

0.55, 
0.57, 
0.61 

0.6, 
0.62, 
0.65 

0.77, 
0.79, 
0.84 

0.69, 
0.73, 
0.75 

0.45, 
0.47, 
0.5 

0.47, 
0.5, 
0.53 

∞ 
0.66, 
067, 
0.7 

0.59, 
0.62, 
0.64 

0.53, 
055, 
0.58 

0.6, 
0.63, 
0.65 

0.6, 
0.64, 
0.66 

11 
0.51, 
0.54, 
0.59 

0.63, 
0.66, 
0.71 

0.54, 
0.56, 
0.59 

0.56, 
0.59, 
0.61 

0.68, 
0.71, 
0.73 

0.46, 
0.48, 
0.5 

0.51, 
0.54, 
0.57 

0.55, 
0.57, 
0.59 

0.55, 
0.57, 
0.6 

0.7, 
0.73, 
0.75 

∞ 
0.6, 
063, 
0.65 

0.55, 
0.56, 
0.59, 

0.41, 
0.42, 
0.45 

0.68, 
0.71, 
0.73 

12 
0.47, 
0.51, 
0.55 

0.71, 
0.75, 
0.78 

0.59, 
0.63, 
0.65 

0.58, 
0.6, 
0.63 

0.6, 
0.62, 
0.65 

0.62, 
0.65, 
0.67 

0.69, 
0.72, 
0.73 

0.42, 
0.45, 
0.47 

0.55, 
0.58, 
0.6 

0.58, 
0.62, 
0.63 

0.57, 
0.59, 
0.63 

∞ 
0.56, 
0.58, 
0.62 

0.36, 
0.38, 
0.4 

0.58, 
0.61, 
0.63 

13 
0.45, 
0.48, 
0.51 

0.43, 
0.47, 
0.5 

0.64, 
0.67, 
0.69 

0.6, 
0.64, 
0.66 

0.55, 
0.58, 
0.6 

0.49, 
0.52, 
0.54 

0.53, 
0.55, 
0.58 

0.44, 
0.48, 
0.51 

0.47, 
0.48, 
0.5 

0.47, 
0.49, 
0.53 

0.68, 
0.71, 
0.73 

0.75, 
0.79, 
0.81 

∞ 
0.47, 
0.5, 
0.53 

0.52, 
0.4, 
0.56 

14 
0.44, 
0.46, 
0.5 

0.51, 
0.54, 
0.57 

0.61, 
0.63, 
0.67 

0.69, 
0.73, 
0.75 

0.72, 
0.75, 
0.77 

0.62, 
0.65, 
0.68 

0.53, 
0.54, 
0.57 

0.7, 
0.74, 
0.76 

0.59, 
0.62, 
0.63 

0.55, 
0.58, 
0.6 

0.43, 
0.46, 
0.48 

0.45, 
0.47, 
0.49 

0.45, 
0.47, 
0.49 

∞ 
0.47, 
0.51, 
0.54 

15 
0.6, 

0.64, 
0.66 

0.68, 
0.71, 
0.73 

0.7, 
0.72, 
0.75 

0.48, 
0.52, 
0.54 

0.65, 
0.68, 
0.7 

0.8, 
0.83, 
0.84 

0.44, 
0.47, 
0.5 

0.56, 
0.59, 
0.63 

0.61, 
0.64, 
0.66 

0.57, 
0.6, 
0.61 

0.47, 
0.49, 
0.51 

0.68, 
0.71, 
0.73 

0.44, 
0.77, 
048 

0.48, 
0.52, 
0.53 

∞ 

The table below displays the risk achieved by the deterministic risk factor and 
fuzzy risk factor from Tables 7 and 8, respectively, at a particular path for both the 
algorithms. 
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Table 9. Result for Risk Factor  

SI NO 

Risk Value Achieved for Deterministic 
Model 

Risk Value Achieved for Fuzzy Model 

GA  MGA 
Maximum Risk 

(Rmax) 
GA MGA 

Maximum Risk 
(Rmax) 

1 
2.78 2.65 7.23 2.30 2.23 6.44 
3.14 3.14 9.01 2.09 1.93 5.23 
2.09 1.77 5.25 3.01 3.01 8.41 

2 
2.46 2.30 6.01 2.11 2.12 6.44 
2.70 2.62 9.21 1.81 1.74 5.23 
2.05 1.89 7.44 3.26 3.26 8.41 

3 
2.86 2.55 8.88 2.48 2.39 6.44 
2.98 2.99 9.00 1.69 1.55 5.23 
1.81 1.71 6.68 2.70 2.70 8.41 

4 
2.46 2.23 8.34 2.34 2.27 6.32 
3.11 3.05 7.28 2.99 2.98 8.56 
2.22 1.44 6.98 1.47 1.42 5.20 

5 
2.64 2.49 8.95 2.50 2.47 6.32 
3.25 3.21 8.90 3.46 3.23 8.56 
1.68 1.75 8.32 2.15 1.75 5.20 

6 
2.53 2.50 8.59 2.07 1.95 6.32 
3.05 3.09 9.17 2.91 2.70 8.56 
1.71 1.71 7.64 2.11 1.96 5.20 

7 
2.41 2.35 8.29 2.93 2.83 8.76 
2.85 2.85 8.61 2.04 1.96 6.73 
1.93 1.83 6.25 2.15 2.15 7.68 

8 
2.51 2.50 7.48 3.54 3.53 8.76 
3.53 3.49 10.28 2.31 2.29 6.73 
1.70 1.64 8.25 2.45 2.23 7.68 

9 
1.81 1.72 7.32 1.90 1.85 5.20 
1.93 1.95 8.17 2.31 2.26 7.66 
2.50 2.46 8.54 3.44 3.42 8.32 

8. Statistical Test  

We compared the statistical test quantitative decision of the proposed algorithm 
with other those of other conventional algorithms. The analysis of variance (ANOVA) 
was performed to indicate the statistical significance of the proposed algorithm with 
the conventional algorithms (RWGA and PBGA). 

8.1. ANOVA for the efficiency test  

The performance of MGA, RW selection-based GA (RWGA), and probabilistic 
selection-based GA (PBGA) for solving the standard ship routing problem was 
compared. We obtained various parametric values, such as the different number of 
vessels, V3, V4, and V5; different number of containers, C7, C10, C15, C20, and C23, 
and four instances, namely instance 1 (I1), instance 2 (I2), instance 3 (I3), and 
instance 4 (I4). Various instances obtained various source ports and destination ports 
for the container, which changed the path of ships. In this model, nine types of data 
sets were considered for the ANOVA test. These nine data sets were categorized into 
two, short sea and deep-sea categories. Short sea data sets are represented as three 
ships and seven containers (V3C7), three ships and ten containers (V3C10), three 
ships and fifteen containers (V3C15), four ships and fifteen containers (V4C15), four 
ship and 20 containers (V4C20), five ship and 20 containers (V5C20). Deep sea data 
sets are represented as three ships and 15 containers (V3dC15), three ships, and 20 
containers (V3dC20), four ships, and 23 containers (V4dC23). We obtained the result 
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for three types of the algorithm by using the standard ship routing library given by 
Hemmati et al. (2014). The results for benchmark data are expressed as follows 
(Table 10): 

Table 10. Comparative Results for Benchmark Data  

 
Short Sea Deep-Sea 

V3C7 V3C10 V3C15 V4C15 V4C20 V5C20 V3dC15 V3dC20 V4dC23 

MGA 

I1 876483 1313111 664424 454848 655617 642901 17263074 24286620 46565448 
I2 876580 1162171 593090 458165 642039 669206 15369754 24621576 48265056 
I3 899058 1320132 650774 418006 667173 548434 15906567 26041704 44681920 
I4 897202 1392051 683387 424909 663714 627702 15743047 24509110 48519056 

RWGA 

I1 1323232 1813450 861581 461202 800196 798402 22402576 33192620 65667660 
I2 1331933 1624214 895387 498499 738716 747174 2143396 32698632 65663988 
I3 1185146 1846947 801951 491465 725799 736120 21872220 32146192 60964440 
I4 1335549 1779040 861432 437312 727999 788223 21539136 34659412 61995028 

PBGA 

I1 1245731 1553214 842612 482627 800231 788321 20982165 33101152 50501933 
I2 1013155 1411325 791313 471737 712913 792319 19036152 31987645 52901340 
I3 1256324 1402389 782451 500321 773211 699939 18862371 29136691 57631210 
I4 1200135 1428362 802314 492001 690023 700291 19116692 29900267 7010005 

For all three algorithms, we obtained 500 maximum generation (Max-gen) and 
100 as the population size (Pop-size). The three algorithms were tested by using ship 
routing benchmark data. The results were obtained 100 win runs for all three 
algorithms. We compared more than two algorithms for efficiency tests. Therefore, 
the ANOVA is the best choice. We considered 100 runs and used the number of 
successful runs for three algorithms, namely MGA, RWGA, and PBGA, which are given 
in the following Table 11.  

Table 11. Number of wins run for different Algorithms  

 
Short Sea Deep-Sea 

V3C7 V3C10 V3C15 V4C15 V4C20 V5C20 V3dC15 V3dC20 V4dC23 

MGA 

I1 82 97 80 84 78 87 81 78 87 
I2 86 89 87 88 95 91 82 84 88 
I3 91 92 82 93 90 94 79 90 81 
I4 90 96 88 94 86 91 89 93 86 

RWGA 

I1 72 69 64 62 61 62 67 68 70 
I2 75 70 71 69 64 63 66 68 69 
I3 72 76 68 75 71 74 64 70 72 
I4 74 68 68 71 72 70 69 70 68 

PBGA 

I1 60 61 54 56 60 59 54 62 55 
I2 61 62 58 61 55 54 63 55 60 
I3 59 55 61 54 56 61 60 58 56 
I4 58 55 63 59 61 55 61 59 58 

The ANOVA test presents a comparison of flexibility between the groups and 
flexibility within the groups. The sum of the square provides a total variation between 
the groups and within groups. The degree of freedom is calculated between groups as 
(number of samples of the individual group – 1) and within groups as (sum of all the 
samples – number of the sample of individual groups). The mean of the square is the 
sum of the square divided by the degree of freedom (mean of square = sum of 
square/degree of freedom). F is calculated as the comparison of the mean of the 
square between groups and the mean of the square within groups. The given Table 12 
presents the ANOVA test result for the proposed model and two other algorithms: 
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Table 12. ANOVA Test Result  

Instance No. Source of Variation Sum of Square 
Degree of 
freedom 

Mean of Square F 

Instance 1 
Between Groups 3149.85 2 1574.93 

76.62 
 

Within Groups 493.33 24 20.55 
Total 3643.18 26  

Instance 2 
Between Groups 3931.18 2 1965.60 

149.71 
 

Within Groups 315.11 24 13.13 
Total 4246.30 26  

Instance 3 
Between Groups 4124.74 2 2062.37 

116.31 Within Groups 425.56 24 17.73 
Total 4550.30 26  

Instance 4 
Between Groups 4605.41 2 2302.71 

291.98 Within Groups 189.56 24 7.90 
Total 4794.96 26  

The total sample size is nine for each algorithm, and the number of the algorithm 
is three. The critical value of V ≈ 3.40 and p is extremely smaller than α = 0.05 for all 
the cases. Because the F critical value is smaller than F, we rejected the null 
hypothesis, which provides statistical significance to the result. A significant 
difference was observed between the algorithms. Therefore, the proposed modified 
algorithm is more efficient than the other two algorithms. 

9. Result discussion   

 We considered various sets of input values for dynamic ship routing and 
scheduling problems to achieve appropriate numerical outcomes. Table 2 provides 
the crisp data input for the traveling cost. Table 3 provides the operation cost of each 
product and the penalty cost for violating the time frame in case of each port. Table 4 
displays the path and cost as the output from our ship routing model with a crisp cost 
matrix obtained by using classical GA and MGA. Table 5 provides the triangular fuzzy 
input data for traveling cost. Table 6 presents the output of our ship routing model 
considering fuzzy data obtained using classical GA and MGA. In Tables 4 and 6, we 
can see that the proposed algorithm provided the optimum result for crisp data input 
as well as the fuzzy data input. The use of crisp risk factors is presented in Table 7, 
whereas the use of fuzzy risk factors is exhibited in Table 8. Table 9 displays the risk 
achieved for the deterministic as well as the fuzzy models for both GA and our MGA. 
Here, Rmax for a route represents the maximum risk value on that route. Table 9 
reveals that the proposed MG exhibited the best result for both the crisp and fuzzy 
data sets. The comparative results for the ship routing benchmark instances for the 
MGA, RWGA, and PBGA are displayed in Table 10, which reveals that the proposed 
MGA provides the best results for benchmark instances. In Table 11, we have 
compared the winning runs of our algorithm and those of two other algorithms. Table 
12 displays the ANOVA test results for the three algorithms working on four 
instances of the data input for the standard ship routing problem. From Table 12, it 
seems we can conclude that the proposed modified algorithm works more efficiently 
and provides better results than the other two algorithms.  
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10. Managerial Insights   

The substitution of the new model gives more space to the manager for making 
decisions regarding which approach to adopt for incurring maximum more profit for 
the organization. With the implementation of our model, a manager has the freedom 
to design the shipping route under an uncertain environment, a situation which can 
be easily applied to the shipping industry in real life. Our proposed model can handle 
dynamic demand and supply, and also generate optimum routes and minimize the 
overall costs of the transportation by ship, which is the principal motto of any ship 
routing and scheduling algorithm. Risk factors are considered in calculating optimum 
routes, which provides a realistic approach to the shipping industry. The use of cost 
minimization and time window reduces overall costs and maintain shipping 
discipline. That is why the proposed model can generate more profit than other 
previous models. The demand and supply of products at the port may vary because of 
market conditions or social issues and use of this model leads to less congestion at 
the port. Considering the cost and risks parameter as the fuzzy number makes the 
model realistic because costs and risks factor are changed time to time. This dynamic 
environment makes ship routing and scheduling problems more suitable for practical 
use. Therefore, management should adopt this realistic model, which is cost effective 
and manages the risks well. 

11. Conclusions and Future Scope   

In our model, we have assumed that ships start their sailing from starting ports, 
visit other ports to ensure the unhindered demand and supply of products at those 
ports, and end their routing in their destination ports. We obtained the optimum 
paths and traveling costs for various ships, and hence the optimal cost is calculated 
by adding the cost of traveling, loading–unloading operations, and penalties (levied to 
ensure port discipline). Cost efficiency and environmental friendliness are prioritized 
by considering a few aspects such as the dynamic demand and supply models 
followed in ports, container-based shipping, and techniques for saving fuel. Fuzzy 
cost and fuzzy risk factor are introduced to represent the impreciseness of the 
parameters. Therefore, in our model, a real-time ship routing approach is proposed in 
an uncertain environment. The advantages of this model are its ability to the 
determined optimal path and cost when various real-life parameters are uncertain. 
This model maintains the port time as well as the traffic, and handles the container 
congestion very smoothly. We have used BBMST selection and IVF crossover 
techniques in our work.  A generation-dependent mutation was used in the proposed 
algorithm in which, when the number of generations increased, the algorithm 
provided a better result. The advantages of the proposed methodology are that the 
novel BBMST selects the better solution for further steps, which gives optimal 
solution in less computational time. The IVF-based crossover method has been used 
on very few instances of work before. The proposed MGA clearly revealed itself as 
being superior other RWGA and PBGA in our numerical experiments. The ANOVA test 
revealed that the proposed algorithm works efficiently.  

However, the model has some limitations. The maximum risk (Rmax) is selected 
randomly to ensure the total risk does not exceed the maximum risk. Dynamic 
weather routing may define various risks of a route for a ship for a particular time, 
which is not considered. We did not consider the container type, so our models are 
based only on standard containers. There also are some limitations in the solving 
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method: as the approach is heuristic, a high computational complexity exists. When 
numerous constraints are considered, the MGA falls short in solving the problem.  

The futures cope of this model is actually quite wide. Various types of containers 
(foldable container and smart container) can be introduced in the future. We can 
predict the dynamic risks of each route using Artificial Intelligence and modern 
technology in the future. Various ranking-based fuzzy approaches, including the type-
2 fuzzy approach, can be used to solve complex uncertain routing problems. We may 

use rough numbers, fuzzy systems, or even neutrosophic numbers in the future. 
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