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Abstract: The main goal of this paper is to harmonize the scales of 
normalized values of various attributes for multi-criteria decision-making 
models (MCDM). A class of models is considered in which the ranking of 
alternatives is performed based on the performance indicators of 
alternatives obtained by aggregating private attributes. The displacement of 
the domains of the normalized values of various attributes relative to each 
other and the local priorities of the alternatives are the main factors that 
change the rating when using various normalization methods. Three 
different linear transformations are proposed, which make it possible to 
bring the scales of normalized values of various attributes into conformity. 
The first transformation, the Reverse Sorting (ReS) algorithm, inverts the 
direction of optimization without displacing the areas of normalized values. 
The second transformation ‒ IZ-method ‒ allows researchers to align the 
boundaries of the domains of normalized values of various attributes in each 
range. The third transformation ‒ MS-method ‒ converts Z-scores into a sub-
domain of the interval [0, 1] with the same mean values and the same 
variance values for all attributes. All transformations preserve the 
dispositions of the natural values of the attributes of the alternatives and 
ensure the equality of the contributions of various criteria to the 
performance indicator of the alternatives. The ReS-algorithm is universal for 
all normalization methods when converting cost attributes to benefit 
attributes. IZ and MS transformations expand the range of normalization 
methods in the case of using nonlinear functions aggregation of attributes. 

Key words: Multiple criteria analysis; normalization; transformations of 

normalized values; conversion of measurement scales. 
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1. Introduction   

Although partly formalized, Multi-Criteria Decision-Making (MCDM) methods are 
an important tool and have been successfully applied across multiple fields and 
disciplines (e.g., Hwang & Yoon, 1981; Tzeng & Huang, 2011). The specificity of 
MCDM tasks is that there is no access to reliable results for comparison. We obtain a 
rating only for candidate alternatives, and this rating depends to a large extent on 
the chosen aggregation method, the method of assigning criteria importance, and the 
normalization technique.  

One of the unsolved problems of multi-criteria analysis is the choice of a method 
for normalizing the matrix of decisions. The main requirement of multivariate 
normalization as a method of data preprocessing is to ensure an equal contribution 
of each feature to the integral performance indicator of the alternative. The 
normalization process scales the criteria values to approximately the same value, 
however, different normalization methods may produce different solutions or 
ranking results. Most research concludes that the solution to the MCDM problem 
varies depending on the normalization method used. Numerous examples of 
comparative analysis presented in the literature when combining the normalization 
method and other parameters of the MCDM model (aggregation method, weights, 
distance metrics) confirm the impact of the choice of normalization method on the 
rating (Pavličić, 2001; Milani et al., 2005; Peldschus 2007; Migilinskas & 
Ustinovichius, 2007; Zavadskas et al., 2008; Ginevičius, 2008; Stanujkič, et al., 2013; 
Lakshmi & Venkatesan, 2014; Aouadni et al., 2017) et al. In some cases, this 
influence is significant. 

An attempt to attribute such a result to the normalization method was not 
successful. It is not possible to single out the best or worst normalization method for 
a particular aggregation method. As a result, the direction of comparative analysis is 
still the main approach in MCDM problems when choosing a method for normalizing 
multidimensional data. 

Research on the effectiveness of normalization methods has also been carried out 
in the field of object classification and machine learning, see for example, Singh D. & 
Singh B., (2020), Pandey & Jain (2017), Alshdaifat et al. (2021), Polatgil (2022), et al. 
In both MCMD and classification, normalization is a preliminary procedure 
integrated into the method. But unlike MCDM, in classification problems it is 
possible to select a set of best normalization methods based on classification 
efficiency criteria, while there is no efficiency criterion in MCDM. Nevertheless, as 
studies show, the superiority of normalization methods in classification problems is 
also relative and is largely determined by an applied problem with a well-defined 
data set. 

In the absence of formalized criteria for choosing a normalization method, one 
approach recommends using the choice based on multiple voting (the Borda family 
of methods). Multiple voting determines the effective group of normalization 
methods that provide 1th rank (or 1-2, or 1-2-3) the most number of times for the 
same alternative. This allows, for example, to exclude from consideration methods of 
normalization that are not consistent with the majority. 

Another line of research focuses on assessing the consistency of ratings obtained 
using different normalization methods for different feature aggregation methods 
Ranking consistency is assessed using various indicators: standard deviation as a 
measure of data scatter, Euclidean distance as a measure of closeness, Spearman’s 
correlation; integral ranking consistency index (RCI) et al. (Chakraborty & Yeh, 2007, 
2009; Çelen, 2014; Chatterjee & Chakraborty, 2014; Vafaei et al. 2018, 2022a, 
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2022b). A normalization method with a higher rating consistency across models is 
considered more reliable. 

Given that MCDM models are partially formalized, and there is no concept of an 
absolutely optimal solution for them. Understanding this fact determines the recent 
trend in solving applied problems, when the solution is formed on the basis of a 
synthesis of estimates obtained using a certain reference set of models, including 
various procedures for aggregation, normalization, weighting, and other additional 
parameters (Palczewski & Salabum, 2019; Salabum et al., 2020; Rezk et al., 2021, 
2022). The reference set of methods (including normalization methods) is formed on 
the basis of the selection of instances (methods), the use of which in solving applied 
problems had positive consequences. 

An alternative to the comparative analysis and consistency of ratings in various 
MCDM models is the normalization method selection approach based on the 
principles that apply to data after normalization. The lack of criteria for choosing 
normalization methods is compensated by a certain set of basic principles that allow 
one to reject methods that lead to results that contradict these principles. In 
particular, Liping et al. (2009) recommend using the principle of "vertical" and 
"horizontal" normalization when choosing a normalization method to eliminate 
significant differences in the areas of normalized values. 

Modern research uses more than 20 different normalization methods, both linear 
and non-linear. A fairly complete overview of the methods is presented in the works 
of Jahan & Edwards (2015) and Aytekin (2021). A feature of multivariate 
normalization is that the features are scaled on their individual scales and different 
normalization methods produce both a different range of values and their different 
density. In this case, the normalizations are not “isotropic,” that is, they compress the 
data cloud more in some directions and less in others. However, despite some 
violations of the data structure (mutual distances) this approach is generally 
accepted. 

The normalized attribute values of the alternatives represent the share of the 
feature in different scales. In some cases, these shares may differ significantly, and 
the contribution of some attributes may dominate when they are aggregated into the 
performance indicator of alternatives. Therefore, a different range of normalized 
values of features and a shift in the areas of normalized values relative to each other 
leads to the priority of the contribution of individual criteria to the performance 
indicator of the alternatives. In particular, for linear normalization methods, this is 
formally due to the fact, that the compression ratios and the bias parameter depend 
on the measurement scale and the range of natural feature values. 

The ranking result depends not only on the normalization method or one simple 
formula applied equally for all attributes but also on the relationship between the 
normalized values of various attributes. This problem is a feature of 
multidimensional data normalization and is not solvable.  

Is it possible to influence such a situation? If the criteria for evaluating 
alternatives are independent, then the normalized values are also independent. This 
allows you to transform the range of normalized values and adjust the relationship 
between the domains and values of the normalized data.  

In this study, the author promotes the approach of ensuring equal contribution of 
features after normalization using targeted linear transformation of the normalized 
values of different features. The preliminary material (Section 2) includes a 
description of some basic feature aggregation methods and linear decision matrix 
normalization methods. 
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Section 3 presents a number of invariant properties under the linear 
transformation of normalized values. Invariant properties guarantee the 
preservation of the information content of the original data during a linear 
transformation. Further given a meaningful interpretation of the main normalized 
scales, which is necessary for choosing a conditionally general scale when 
transforming the normalized values of all features. 

Section 4 shows in detail the effect of shifting domains of normalized feature 
values relative to each other on the ranking results. The displacement of domains is 
formally related to the fact that the compression ratios and the displacement 
parameter depend on the scale of measurement and the range of natural values of 
features. Bias leads to the priority of the contribution of individual criteria to the 
performance indicator of alternatives. It is through purposeful transformation of 
normalized values that the elimination of bias and, accordingly, the priorities of the 
contribution of individual features to the performance indicator of alternatives is 
achieved. 

The 5th section (the main result) presents three important transformations 
based on the fixed point technique that allow you to adjust the relationship between 
the domains and values of the normalized data. 

The first transformation — Reverse Sorting (ReS) algorithm – transforms the 
area of normalized values of cost criteria into benefit criteria (performs the 
inversion of the direction of optimization) without shifting the areas of normalized 
values that occur when using data inversion of the form: –r, 1–r, 1/r. 

The second transformation — IZ-method – allows to align the boundaries of the 
domains of normalized values of various attributes in a given range while preserving 
the dispositions of the attribute values of the alternatives. 

When attributes are measured on different scales, they may be converted to Z-
scores to aid comparison. The third transformation — MS-method ‒ converts Z-
scores to a sub-domain of the interval [0, 1] and stores the means, variances, and 
dispositions of the attribute values of the alternatives for each criterion. 

Section 6 presents examples of solving MCDM problems with high sensitivity to 
variations in the decision matrix using the proposed transformations of normalized 
values for nonlinear aggregation methods WPM, WASPAS and COPRAS. This is 
followed by a conclusion. 

2. Preliminaries 

2.1. The MCDM rank model 

In this study, a class of models in which the ranking of alternatives is performed 
based on the performance indicators of alternatives. The general description of such 
a model is as follows: 

( , , , , , )Q F A C D nm, dm pr= . (1) 

The MCDM rank model includes the choice of a set of alternatives (Ai, i=1,…,m) 
and a set of criteria (Cj, j=1,…,n), an assessment of the values of the attributes of 
alternatives in the context of each criterion ― a decision-making matrix D=(aij), 
definition, a method for assessing the weight or priority of criteria (wj), a choice of a 
normalization method (΄nm΄) of decision making matrix, a choice of metric for 
calculating distances in n-dimensional space of criteria (΄dm΄), a choice of preference 
functions (΄pr΄), a definition of aggregation function (F) of the attributes of 
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alternatives to calculate performance indicator (Qi) of each alternative. Based on the 
calculation of the aggregate performance indicator of alternatives Qi, alternatives are 
ranked. 

Models of the form (2.1) are weakly formalized: the choice of A and C is 
determined by subjective preferences, the estimates of the decision matrix are not 
accurate, there are no criteria for choosing a method for evaluating the weights of 
criteria, a method for normalizing attributes, an aggregation method, a distance 
metric, a preference function, etc. 

2.2. Aggregation models of attributes 

This study uses two main approaches to aggregating the attributes of alternatives 
for which normalization matters. 

In the first case, the aggregation is performed as a weighted sum of normalized 
attribute values in linear (SAW) or nonlinear versions (WPM, WASPAS, COPRAS): 

- SAW (Simple Additive Weighting) method or the WSM (Weighted Sum Model) 
(e.g., Hwang & Yoon, 1981), 

Performance indicator Qi of the i-th alternative was determined as the entire 
standardized estimations of the attributes rij with the weight wj of the j-th criteria: 

1
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i j ij
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=  , (2) 
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WPM (Weighted Product Model) (Hwang & Yoon, 1981), 
Performance indicator Qi of the i-th alternative was determined as: 
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WPM method of aggregation is nonlinear. 
- WASPAS (Weighted Aggregated Sum Product Assessment), 
WASPAS is a mixture (in proportion λ и (1-λ) between the weighted sum model 

(WSM) and the weighted product model (WPM) (Chakraborty & Zavadskas, 2014):   
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- COPRAS (Complex Proportional Assessment) Method (Zavadskas et al.,  1994), 
The aggregation method uses the construction of a performance indicator of 

alternatives based on the function of the two arguments S+i and S-i: 
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where 
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1 1

,
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S = w r for j C S = w r for j C
+ −

−     . (6) 

Attribute aggregation using COPRAS is nonlinear across cost attributes. 
Another group of aggregation methods uses the distance between data units 

(TOPSIS, GRA). When variables in a multidimensional dataset are at different scales, 
it makes sense to calculate distances to the ideal (or desired) object after some 
standardization: 

- TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) (e.g., 
Tzeng &Huang, 2011), 

To determine the performance indicator of the i-th alternative Qi, a homogeneous 
function was used: 

i

i

i i
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S S

−

+ −
=

+
, (7) 

where 

, ( , ) , ( , )ij ij j i ij j i ij jv r w S d v v S d v v
+ + − −

=  = = , (8) 

{max ; min }j ij j ij j
ii

v v if j C v if j C
+ + −
=   , (9) 

{min ; max }j ij j ij j
i i

v v if j C v if j C
− + −
=   . (10) 

Si+ and Si- were the distances d between the ideal and anti-ideal objects 
respectively. Whereas the alternative Ai in the n-dimension attributes space, defined 
in one of the Lp-metrics. The TOPSIS ranking result depends on the choice of distance 
metric.  

- GRA (Grey Relation Analysis) (e.g., Archana & Sujatha, 2012),  
It evaluates the effectiveness of alternatives in two groups with respect to ideal 

and anti-ideal objects. The sequence of calculations is as follows: 
Step 1: Define two sets of attributes i.e., ideal and anti-ideal: 

( )
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. (11) 

Step 2: Determine the matrix of deviations of normalized values from the ideal 
and anti-ideal: 

(1) (1) (2) (2)
,

ijij j ij j ijV r r V r r= − = − . (12) 

Step 3: Determine the matrices the gray relational coefficient: 
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Step 4: Determination of the indicator performance for the alternative Qi: 

(1) (2)
/i i iQ Q Q= , (15)  

(1) (1) (2) (2)

1 1

,
n n

i ij j i ij j

j j

Q g Q g 
= =

=  =   . (16) 

In all of the above attribute aggregation models, the alternative with the most 
elevated Qi score is considered the best. 

2.3. Basic linear methods for normalization of decision matrix 

For rank MCDM models, normalization is used, which produces values to the 
interval [0, 1]. 1 is the best value, 0 is the worst value, and intermediate values 
characterize the degree (proportion) of proximity to the best value. Conversion of 
features into normalized scales can be performed using various functions, both 
linear and nonlinear. This study focuses on linear methods of multidimensional 
normalization. The general form of linear methods of normalization of the decision 
matrix is as follows: 

*

ij j

ij

j

a a
r

k

−
= , (17) 

where aij, rij are the natural and normalized values of the j-th attribute of the i-th 
alternative, respectively, aj* and kj are some pre-assigned numbers, which we will 
call characteristic scales. 

These numbers can be determined by statistical characteristics (normalization 
according to statistics), or given for some a priori considerations (normalization 
according to standards). Critical values of an indicator, best and worst “favorable” 
values, and other assessments lexically related to the problem of analysis can act as 
“standards”. Then these estimates have a subject interpretation. Table 1 presents 6 
basic linear normalization methods most often used in multi-criteria choice 
problems (Chatterjee & Chakraborty, 2014; Vafaei et al., 2018; Jahan & Edwards, 
2015; Aytekin, 2021).  

Table 1. Basic linear methods for normalization of decision matrix. 

non displacement: / jij i jr a k=  with displacement: *
( ) / jij i j jr a a k= −  
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The short name of the normalization methods is determined by the semantic 
value of the compression ratio k. The method abbreviation is also used as the name 
of a function that converts values in accordance with the normalization method. For 
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example, rij=Max(aij)= aij/ajmax. The dSum normalization method (Zeng et al., 2013) 
is an example of a multi-step procedure that is implemented by a combination of 
Max-Min, Sum and double inversion (Inv) normalized values: 

 = dSum( ) = Inv (Sum (Inv (Max-Min( ))))r a a . (18) 

In details: 

(1) t=Max-Min(a), Max‒Min-method for all attributes,  
(2) u=1‒t+, inversion values only for benefit attributes, 
(3) v=Sum(u), Sum-method for all values u, 
(4) r=1‒v, inversion for all attributes. 
For dSum-method, when normalizing cost attributes, the following reverse 

transform is used: 

min

* *

min

*

1

1

( )

j ij

ij m

j ij

i

a a
r

a a
=

−
= −

−

. (19) 

3. Some important properties of linear normalization methods 

3.1. Interpretation of normalized scales 

A meaningful interpretation of normalized attribute values for basic linear 
normalization methods is as follows: 

- Max: the fraction of the attribute of the i-th alternative relative to the largest 
attribute value or the degree of approximation to the best value 1, 

- Sum: the proportion of the attribute of the i-th alternative from the total 
result (sum) or the contrast of the i-th alternative according to the j-th 
criterion ∑rij=1, 

- Vec: the fraction of the attribute of the i-th alternative relative to the 
diameter of the m-dimensional rectangle built from the values of all 
alternatives or the projective angle, the equilibrium value of which is 1/√m, 

- Max-Min: the fraction equal to the ratio of the deviation of the attribute of 
the i-th alternative from the smallest value to the range of values of all 
alternatives according to the j-th criterion, 

- dSum: inverted contrast of the maximum values of the attribute of the i-th 
alternative according to the j-th criterion, 

- Z-score: the standardized deviation of the attribute of the i-th alternative 
from the mean of all alternatives, defined in multiples of the standard 
deviation. 

Thus, the main methods of normalization have a well-defined agreement with the 
geometry of the value space or multidimensional cloud of the original data. However, 
the measurement scales and the geometry of the value space do not agree in any 
way. Obviously, compressing stretching and shifting the space of individual 
dimensions is not prohibited, since the attributes are independent. The stretch-
compression ratios are different for different attributes, and the displacement ratios 
are also different. But in this case, it is necessary to justify the transformations and 
reconcile the normalized values of various attributes with each other in order to 
avoid unpredictability of results and consequences. 
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One of the reasons why the same normalization method is applied to different 
attributes is to interpret the normalized values of different attributes in the same 
way in order to subsequently aggregate values of the same order and not add the 
fractions of different values. 

3.2. Invariant properties of linear normalization methods 

P1. One of the main requirements for data normalization is the preservation of 
the information content of the data after transformation. It is reasonable to require 
that the proportions of the natural and normalized values of the attributes be 
preserved. The relative distance between the values of the j-th attribute of the i-th 
and k-th alternatives reduced to the range of the j-th attribute is defined as the 
disposition of the i-th and k-th alternatives by the j-th attribute: 

max min

ij kjj

ik

j j

a a
d

a a

−
=

−
. (20) 

It is easy to show that, for all linear methods of normalization, the dispositions 
between the natural and normalized values of the alternatives are preserved: 

*

, , 1,
rng( ) rn

f
g

i
( )

ji j p j q j p j q j

i j

j j j

a a r r a a
r p q m

k r a

− − −
=  =  = . (21) 

Keeping the dispositions of alternatives after normalization means that the result 
of the uniform scaling is similar (in a geometric sense) to the original. But this only 
happens on the j-th attribute (coordinate). In the one-dimensional case, linear 
normalization methods are combinations of each other. There is a scaling of form 
under a linear transformation — namely, the invariance of the dispositions. “Scaling, 
a linear transformation that enlarges or diminishes objects” — 
https://en.wikipedia.org/wiki/Scaling. For multi-criteria problems, linear methods 
produce anisotropic scaling when at least one of the scaling factors is different from 
the others. 

P2. Scaling with the same scale factor for each direction of the axis (scaling in the 
multidimensional case) does not affect the ranking result when the MCDM model 
uses a linear (SAW) or homogeneous function (TOPSIS, GRA) as the aggregation 
function. 

The linear transformation uij = k∙rij + b does not change the ranking if a linear 
function (SAW) is used to aggregate the attributes: 

* *
if ( )> ( )  then for ( ) > ( ), , 1,...,p q ij ij p qQ r Q r u k r b Q u Q u p q m=  +   = . (22) 

The performance indicators of alternatives are invariant with respect to the 
linear transformation in the case of using a homogeneous aggregation function 
(TOPSIS, GRA): 

( )= ( )p pQ r Q u . (23) 

P3. Normalization based on a linear transformation produces a measurement 
scale in which the first and second standardized moments (mean and standard 
deviation) are scaled by the same coefficients, and the third and fourth standardized 
moments (skewness and kurtosis) are invariants. 
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4. Ratios of normalized scales and variation in ranking 

4.1. Domain of normalized values 

The domain of normalized values for the above methods (except for the Z-score) 
is a subset of the set [0, 1]. Domain position to the j-th criterion on the set [0, 1] is 
determined by the parameters of the selected normalization method aj* and kj. An 
illustration of the location of domains of normalized values for the main linear 
normalization methods is present in Figure 1.  

 

Figure 1. Domains for 2rd attribute when using different normalization 

methods. ai,2=(54, 62, 86, 76, 83, 79, 92, 70). 

For all linear normalization methods, the result of uniform scaling is similar (in 
the geometrical sense) to the original. With a linear transformation, the scaling of 
images takes place — the invariance of the arrangement of values.  

However, in the multidimensional case, the scaling factors are different for 
different attributes. The stretch-contraction coefficients of the values for each j-th 
attribute for the Max-Min, Max, Vec and Sum normalization methods satisfy the 
inequalities: 

0.5for 0
max min max 2

1 1

ja m m

j j j i j i j

i i

a a a a a


= =

 
−    

 
  . (24) 

In this set (24), the compression coefficient for the dSum-method can take values 
from the second to the fifth position, and for the Z-score, the first and second 
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positions, depending on the data distribution. Statistical experiment for evenly 
distributed over the interval [0, 1] data showed that in 90 and 67% of cases, 
respectively, inequality (24) for each attribute has the form: 

for 090% 67%

Z Max-Min Max Vec Sum

ja

dSumk k k k k k


     , (25) 

In particular (as shown in Figure 1), there will be an increase in the contribution 
of the “upper values” to the performance indicator of alternatives if the dSum or 
Max methods are used for the benefit attributes, or an increase in the contribution of 
the “smaller values” when using the Sum or Vec methods for the cost attributes. 

4.2. Displacement of domains of normalized values of various attributes 
relative to each other 

The essential difference between the linear methods in the multidimensional 
case is the mutual arrangement of the domains of the normalized values of various 
attributes relative to each other. Mutual arrangement of domains for various 
attributes on the set [0, 1] is determined by both absolute and relative values of the 
normalization parameters aj* and kj attributes. A visual illustration of the relative 
position of the domains of normalized values for the main linear normalization 
methods is shown in Figure 2.  

 

Figure 2. Mutual arrangement of domains of normalized values for the 

basic linear methods of normalization, and the result of ranking 

alternatives for the decision matrix D0. Equal weight of criteria. 

Hereinafter, the author uses the test case decision-making matrix D0, dimension 
[8x5] (8 alternatives and 5 criteria), presented in the Table 2. 
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Table 2. Decision matrix (test case) D0 =(aij) [8x5]. 

aij 
 Criteria 

 C1
+ C2

‒ C3
+ C4

+ C5
‒ 

benefit(+)/cost(–) + – + + – 

A
lt

er
n

at
iv

es
 

A1 580 54 178 2065 6000 

A2 478 62 150 1056 4500 
A3 564 86 145 2680 5800 
A4 620 76 135 1230 5600 
A5 615 83 183 1350 6200 
A6 610 79 160 1650 5900 
A7 667 92 140 1650 6500 
A8 448 70 160 1480 4200 

 
For each normalization method, the domain of each (of the five) attributes is 

represented by a vertical bar of values. The points represent an ordered set of 
normalized attribute values in the scale [0, 1]. The results for the Z-score 
normalization are given on an individual scale. Additionally, for each normalization 
method, the graph shows sequential numbers of alternatives of I-III ranks for SAW, 
TOPSIS aggregation methods (equal weights). Broken lines connect attribute values 
of ranks I, II, and III alternatives for the SAW aggregation method. 

The jumps in the relative location of the normalized value domains of various 
attributes for different normalization methods are obvious. We observe, for 
example, a strong difference in the relative position of the 4th attribute domain. Only 
the Max-Min normalization method does not have its normalized value domains 
shifted. 

1 rank has alternative A1 (SAW) due to the greater contribution of the second, 
third and fourth attributes, and for the Sum normalization method, 1 rank is 
reversed. Alternative A3 has 1 rank (TOPSIS) due to the priority on the fourth 
attribute (maximum value, blue line). There is also a reversion of alternatives of 2 
and 3 ranks for normalization methods with a bias: Max-Min, dSum, Z-score. Figure 
2 demonstrates that rank reversion is due to a shift in the domains of normalized 
values of various features relative to each other. 

Thus, a different range of normalized values and a shift in the domains of 
normalized values of various attributes relative to each other leads to the priority of 
the contribution of individual criteria to the alternatives performance indicator, 
which entails changes in the ranking of alternatives. 

Consequences: 
• the Sum and Vec normalization methods should not be used for multivariate 

normalization or used only after additional bias analysis, as these methods have 
potentially large biases of different feature domains relative to each other. The Sum 
and Vec methods are good one-dimensional (vector) normalization methods that 
have an interpretation of the contribution intensity and projective angles, 

• Max and dSum normalization methods equalize the upper values of all features 
(=1). For these methods, only the lower boundary of the domains is shifted. As a 
result, when choosing the best solution (when maximizing the integral indicator), 
the displacement of the lower levels has little effect on the result for the 1-rank 
alternative. However, as shown in the examples of Section 4.2, in the case of 
competition of alternatives, the rank inversion is also possible due to the 
displacement of the lower boundary of the regions, 
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• the Max-Min normalization method has no displacement in the areas of 
normalized values of various features (isotropic normalization), but the presence of 
zero values does not allow using it for some feature aggregation methods (WPM, 
WASPAS, COPRAS). 

4.3. Local priorities of alternatives 

In addition to displacement domains, ranking is influenced by the priorities of 
alternatives according to various criteria. Let us define the priorities of the 
alternatives according to various criteria as local priorities of the alternatives. If 
several, alternatives have local priorities according to different criteria, then a 
situation is possible in which the performance indicators of such alternatives will 
differ insignificantly. Therefore, to determine the priority of alternatives, it is not 
enough to compare the absolute values of the performance indicator Qi according to 
(1). Attribute values may not be accurate. For example, an attribute can be measured 
approximately, the data source can be unreliable, the measurement was made in 
error, the measurements for various alternatives were carried out by different 
methods, some attributes can be random values or determined by interval values, 
etc. In such conditions, the solution is sensitive to error when evaluating the initial 
values of the attributes. 

A situation with a high sensitivity of the solution can be recognized using the 
relative performance indicator of alternatives (relative PI): 

1( )
d 100%, 1,..., 1

( )

p p

p

Q Q
Q p m

rng Q

+−
=  = − , (26) 

where Qp is the value of the performance indicator corresponding to the p-rank 
alternative, rng(Q)=Q1-Qm. 

dQ score is the relative (on a Q scale) increase or decrease in the performance 
score for an ordered list of alternatives. We believe that two alternatives, the relative 
increase in dQ of which differ less than the value of a given a priori error, should be 
considered indistinguishable. 

In conditions of high sensitivity, the choice of the normalization method can 
change the value of the performance indicator, which will entail a change in the 
ranking of alternatives (Mukhametzyanov & Pamučar, 2018). 

Let's demonstrate the above reasoning with an example. It is necessary to 
generate a decision matrix that is sensitive to the choice of the normalization 
method (with all other parameters being the same for the decision-making model). 

The technique for generating such a matrix of solutions D1 is based on the 
generation of random values (uniform distribution). It is necessary for each 
attributes to generate m random values (m alternatives) from the range of values 
determined by specifying the range of values. For each such decision matrix, ranking 
is performed using various normalization procedures (with other parameters of the 
MCDM model fixed). The iterative procedure for finding D1 ends when, for the 
selected set of normalization methods, all the I-rank alternatives are different. In the 
Table 3 shows the decision matrix D1 for which the 1-rank alternatives (TOPSIS 
aggregation) are different for the 6 basic linear normalization methods.  

The decision matrix D1 has the same range of values as the decision matrix D0 in 
the Table 2.  
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Table 3. Decision matrix D1=(aij), [8x5]. 

 C1
+ C2

‒ C3
+ C4

+ C5
‒ 

A1 667 70 135 1344 5669 

A2 478 66 154 2233 6234 
A3 448 71 156 2180 5188 
A4 506 54 183 1143 6500 
A5 455 87 163 1962 5901 
A6 531 92 137 2680 6282 
A7 558 65 181 1056 6457 
A8 531 67 136 1056 4200 

The algorithm for generating the matrix D1 is such that the range of the matrix D1 
and the relative position of the attribute domains correspond to the range of the 
matrix D0. Such a decision matrix D1 can hypothetically define the same decision-
making problem as defined by specifying the matrix D0, but with a different set of 
alternatives. 

In Figure 3 shows the normalized values and the results of ranking alternatives 
for the decision matrix D1.  

 

Figure 3. Mutual arrangement of areas of normalized values and ranking 

of alternatives for the decision matrix D1 for various linear normalization 

methods (equal criteria weights). 

In the title and comment of each option (subplot) in the Figure 3 includes the 
normalization method and the numbers of alternatives of I, II and III rank, 
respectively, obtained for six different aggregation methods — SAW and TOPSIS. 
Attribute aggregation is done with equal weights. The ranking results using various 
combinations of the normalization method and the aggregation method show that 
the alternatives of the 1-st rank for all 6 normalization methods when aggregated by 
the TOPSIS method are different for all 6 normalization methods. These are, 
respectively, alternatives A3 (Max), A6 (Sum), A2 (Vec), A4 (Max-Min), A8 (dSum), A1 
(Z-score). When aggregating by the GRA-method, the alternative of the 1st rank for 
the 4 normalization methods (Max, Vec, Sum and dSum) are the same — A3.  

Figure 3 shows a situation in which some of the attributes are “strong” and 
approximately the same part is “weak”. The performance indicators of such 
alternatives will differ slightly, and therefore the alternatives are hardly 
distinguishable. For the example presented (TOPSIS), the values for the relative 
performance indicator are presented in the Table 4. 
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Table 4. The relative performance indicator dQ. TOPSIS aggregation 

method. 

Normalization 
method 

Ai TOPSIS for D0 Ai  I rank TOPSIS for D1 Ai  I rank GRA for D1 
I rank dQI dQII all different dQI dQII all equal dQI dQII 

Max 1 21,4 41,3 5 8,3 9,7 3 1,8 12,7 
Sum 3 0,8 65,5 8 0,6 1,6 3 13,1 5,3 
Vec 1 1,2 64,6 8 1,2 0,0 3 10,1 6,5 

Max-Min 1 57,7 2,4 2 12,9 1,3 4 29,6 0,8 
dSum 1 39,4 4,4 3 24,6 36,1 3 2,7 3,2 

Z-score 1 62,8 0,2 7 6,4 2,2 4 22,7 6,9 

 
Let us determine the value of a given a priori error (or accuracy) for calculating 

the performance indicator of alternatives Q, for example, 5%. Then the initial matrix 
of solutions D0 when using the normalization methods Max, Max-Min, dSum and Z-
score has a low sensitivity, and when using the methods of normalization Sum and 
Vec high sensitivity. The latter is due to the shift in the domains of the normalized 
values of all attributes in the interval [0, 1] for the Sum and Vec method, and 
flattening the upper values for the Max, Max-Min, dSum and Z-score normalization 
methods. The solution for D0, when using all normalization options, demonstrates 
stability (Figure 3). In such a situation, the reliability of the result of ranking 
alternatives by the absolute value of the integral indicator Q is high. 

For the decision matrix D1, the relative difference in performance indicators for 
most normalization options does not exceed 1-5%, and in some cases the difference 
is fractions of a percent. In such a situation, the ranking of alternatives in terms of 
the performance indicator Q is doubtful. The solution is highly sensitive to the choice 
of the normalization method. Additionally, the solution is also highly sensitive to 
attribute estimates. A slight change in the values (in this example, enough in the 
second decimal place) leads to a change in the ranking. 

For the variant where the ranking does not change the alternative with rank I 
(GRA), the relative difference in the performance indicators of almost all 
normalization options is more than 5%. The solution has little sensitivity to the 
choice of the normalization method. 

Since the generated matrices have a similar range of values as for the matrix of 
solutions D0 (see Table 2), the domains and their relative positions in the Figure 2 
and Figure 3 are almost the same. This means that the ranking result depends on the 
ratio between the values of the original decision matrix and is determined by the 
local priorities of the alternatives for various attributes. 

Similar results were obtained (generation of decision matrices D1 and 
subsequent analysis of solutions) for the aggregation methods SAW, GRA, WPM, 
WASPAS and COPRAS. 

When making decisions in situations of high sensitivity, several alternatives are 
generally recommended. But this becomes clear only after a comprehensive analysis. 

Thus, it is necessary to consider that not only the normalization method 
determines the result, but also the relationship between the values of the original 
decision matrix or the local priorities of alternatives for various attributes. 
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5. Normalized data transformations 

5.1. Transformation with a fixed-point technique 

Casting attribute values (natural or normalized) by shifting to a new coordinate 
system with a zero initial value allows the origin to be used as a fixed point when 
scaling: 

min

ij ij ju a a= − , (27) 

min

ij ij jv r r= − . (28) 

Such a procedure makes it possible to easily establish the necessary proportions 
between the scales of various attributes. In particular, the Max-Min normalization 
method has such an algorithm. In accordance with the calculation formula, the 
values are first shifted to a fixed point, and then scaling flattens the range of change 
of the normalized values of all attributes. 

5.2. Inverting of optimization direction. ReS-algorithm 

Two basic inverse transformations are used to convert the natural or normalized 
values of the cost criteria. These are 1) reflection relative to zero: –r, or 1–r with 
shift; 2) inverse transformation: 1/r (nonlinear inversion). All other inversions are 
functions of basic transformations. 

The main problem when applying inverse transforms is shifting the range of 
values of attributes. This changes the contribution of the cost criteria to the 
aggregate measure of the effectiveness of the alternatives. Nonlinear inversion of the 
form 1/r preserves only the monotony of the values of the attributes of the 
alternatives. The ratios between the attribute values before and after the inversion 
change, which leads to a distortion of information in the source data. Transformation 
1/r leads to a change in the range of normalized values and to a displacement in 
domains. 

To normalize the cost features Cj‾, the ReS algorithm proposed by 
Mukhametzyanov (2020) is recommended: 

     ( ), 1,...,ij ijr Norm a j n=  = ,  

     
max min *

* * * *
,ij ij j j j

r r r r j C
−

= − + +   . (29) 

The ReS-algorithm preserves the dispositions of natural and normalized values 
for cost attributes and the location of domains relative to each other: 

*
* ** *max( ) max( ), min( ) min( ),ij ijij ij j

i ii i
r r r r j C

−
= =   . (30) 

The ReS-algorithm allows the same linear normalization (Norm) method to be 
applied to the benefit and cost attributes and is versatile and efficient across all 
normalization methods.  

An illustration of the inversion of the cost attributes of the matrix D0 (2nd 
criterion) when using the Sum-method of normalization is shown in Figure 4. 
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Figure 4. Graphic illustration of the inversion of normalized values (Sum) 

of cost criteria C2‾ to the benefit criteria. 

The inversion of normalized values can also be done by changing the sequence of 
transformations. First, apply the ReS-algorithm for natural values of the attributes, 
then normalization with the chosen method: 

     
max min *

* * * * ,ij ij j j ja a a a j C
−

= − + +   , 

     ( ), 1,...,
ij ij

r Norm a j n=  = . (31) 

In this case, the dispositions of natural and normalized values are preserved, 
however, there is a slight displacement in the domain and a change in the range of 
cost attributes relative to the normalized values obtained by the Sum, Vec, dSum, Z-
score methods (except for Max and Max-Min), or one or both equalities (30) are 
fail.  

The ReS-algorithm is a linear transformation and, as a consequence, preserves 
the dispositions of natural values (shape invariance). 

The ReS-algorithm is a centrally symmetric transformation (see Fig. 5.1), so the 
mean and median are also transformed in a centrally symmetric way, the variance 
and excess do not change (invariant), the data skewness changes sign only. 

5.2.1. Comparison of the ReS-algorithm of inversion and some normalization 
methods of cost criteria 

A methodological error is the approach of separate normalization of cost criteria, 
which is used in almost all works on the normalization of multidimensional data. 
Data inversion should not be associated with the transformation of cost attributes 
into benefit attributes. The target value of an attribute in selection problems can be 
of three types: 1) smaller-the-better, 2) larger-the-better and 3) nominal-the best. 
Accordingly, criteria are refer to as cost criteria, benefit criteria and target nominal 
criteria. Coordination of the direction of the criteria is achieve by inverting the goal 
from a minimum to a maximum or vice versa. The choice of direction for maximizing 
or minimizing the performance indicator does not affect the ranking result. 
Inversion transforms the data in the following way: smaller values become larger, 
and vice versa, larger values become smaller. Considering the relativity of the 



 Mukhametzyanov /Decis. Mak. Appl. Manag. Eng. 6(1) (2023) 399-431 

416 

direction and the independence of the solution from the change in the direction of 
optimization, the rational choice of which data to invert — for cost or benefit 
criteria, is determine by the ratio between the number of benefit and cost attributes 
in a particular problem. For example, if the task contains nine cost criteria and one 
benefit criterion (Rezk et al., 2021), then it is advisable to apply the inversion for the 
benefit criterion and search for the optimal solution by the criterion of minimizing 
the integral indicator.  

Although it seems that the result of converting cost attributes to benefit 
attributes and data inversion is the same, this is not the case. Let's criticize a number 
of the most common formulas for converting cost attributes to benefit attributes for 
normalizing Max, Sum and Vec based on the transformation of the form 1–r (#1) 
and Norm(1/a) (#2) (Figure 5): 

 

Figure 5. 1st and 2nd type of inversion vs. ReS-transform combined with 

Max, Sum, and Vec normalization methods. 

Transformations of the 1st type (#1) lead to a shift (sometimes significant — 
antiphase as for i.Max1) of the domains of the normalized values of the cost criteria 
relative to the benefit, as soon as the average differs from 0.5. The natural value 
dispositions are preserved because the transformation is linear. 

Transformations of the 2nd type (#2) are non-linear, therefore, they do not 
retain their shape (deform the mutual distances). 

An illustration of the normalization-inversion in comparison with the ReS-
transformation for the decision matrix according to the Table 2, where 2th and 5th 
criteria are cost criteria, is shown in Figure 6. 

Figure 6 shows a strong bias (red lines) for the 1st type of transformation. This 
means that for the Max-method, the contribution of cost criteria (C2 and C5) will be 
greatly underestimated, and for the Sum and Vec normalization methods, on the 
contrary, the contribution will be overestimated. 

It should not be surprising why a rank inversion would occur for this task. For 
example, in the SAW aggregation method (which requires the inversion of cost 
attribute values) for the problem under consideration, with a set of weight 
coefficients w=(0.17 0.19 0.17 0.17 0.3), a rank 1 inversion occurs from alternative 
A4 at using type 2 inversion to alternative A2 for 1st type of inversion. 
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Figure 6. Domain displacement and shape deformation during inversion 

versus ReS-transformation. Decision matrix according to the Table 2. C2‾ 

and C5‾ care cost criteria. 

The second type of inversion (#2) can be considered satisfactory. The domains of 
the normalized values are the same for the i.Max2 method or nearly the same for the 
i.Sum2 and i.Vec2 methods. However, the deformation of the form is not satisfactory 
(Figure 7, 8). 

 

 

Figure 7. Data compression at inversion of the second type. Decision 

matrix according to the Table 2, 5th criterion (C5‾ ). 

The transformation does not have central symmetry. The degree of data 
compression (k) for the pair Sum-i.Sum2, Vec-i.Vec2 is approximately the same.  

However, the mutual distances of normalized data and natural data are violated 
(shape deformation), which is well illustrated in Figure 8. Imagine a model of an 
architectural structure, for example, on a scale of 1:10. This model gives the 
observer a complete picture of the future structure. You can linearly transform the 
model and get another model, for example, on a scale of 1:100.  
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Figure 8. Violation of mutual distances during inversion of the second 

type. Decision matrix according to the Table 2, 5th criterion (C5‾). 

The idea of the building will not change. However, if this model is deformed non-
linearly, then these will be two different models.  

If the nonlinear deformation is not so significant, then these two models will still 
be similar. This example shows that the second type of conversion can preserve the 
ranking. However, why use such a transformation when the ReS-algorithm is 
available, which is a universal method for inverting attribute values of all types, is 
combined with any normalization method and allows you to agree on the direction 
of optimization for both cost criteria and profit criteria. The result of such a 
transformation excludes the priority of the feature's contribution to the integral 
performance indicator of the alternative. 

Thus, based on the analysis performed, the authors do not recommend using 1st 
and 2nd type of inversion in combination with the Max, Sum and Vec normalization 
methods (Figure 5). 

Note also that the ReS-algorithm used in combination with the Max-Min 
normalization method is the same as the standard cost criteria inversion: 

i.Max-Min: 
min max

max min max min
1 ReS(Max-Min( ))

ij j j ij

ij ij

j j j j

a a a a
r a

a a a a

− −
= = − =

− −
. (32) 

The ReS-algorithm is a universal method for inverting attribute values of all types 
and allows you to agree on the direction of optimization. The properties of the ReS-
transformation are described in more detail in the study Mukhametzyanov (2020).  

5.3. Eliminate the displacement in domains of normalized values. IZ-
method of reduction to a conditionally general scale. 

In accordance with section 4, for all linear methods (except Max-Min) there is a 
different magnitude of the range and a shift in the domains of normalized values for 
various attributes (Figure 2). The degree of difference in the domains of various 
attributes is different for different normalization methods, and also depends on the 
attribute measurement scales. 

The problem of shifting the area of normalized values of various attributes is 
solved by the IZ transformation method (Mukhametzyanov, 2021). The main idea of 
IZ transformation is to align the domains of normalized values of different attributes. 
The key feature of the IZ-method is the choice of a common scale of normalized 
values that is consistent for all attributes and has the same interpretation. This 
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allows aggregating normalized values of the same order, rather than fractions of 
different values. 

It is assumed that a well-defined normalization method Norm(aij) is chosen for a 
specific problem. Such a choice may be due to a specific meaningful interpretation of 
the normalized values representing different proportions (values), as described in 
section 2.3 above. 

The lower (similarly, upper) limit of normalized values for n attributes can be 
different: 

min min min

1 2 1 2{ , ,..., } {min , min ,..., min }n i i in
i i i

r r r r r r= , (33) 

max max max

1 2 1 2{ , ,..., } {max , max ,..., max }n i i in
i i i

r r r r r r= . (34) 

Let's perform the transformation of the normalized values of each attribute from 
the interval [rjmin, rjmax] into some fixed interval [I, Z]⊂[0, 1] using the fixed point 
technique. To do this, we will shift the domain to a new coordinate system with a 
zero initial value 

min

ij jr r− . (35) 

Next, we perform a linear transformation of the normalized values of all 
attributes into the interval [I, Z] using stretch-compression and shear operations: 

min

max min
( ) 1 1

ij j

ij

j j

r r
z , i= ,m; j= ,n

r r

−
=  +  

−
Z-I I  . (36) 

As a result, we obtain new normalized values zij ∈ [I, Z]⊂[0, 1]. 
A step-by-step illustration of the IZ-transformation of normalized values is 

shown in Figure 9. 
Interval [I, Z] represents a common, consistent scale of normalized values for all 

attributes. Limit values are defined, respectively, as: 

min min

min max
min , maxj jI r I r= = , (37) 

max max

min max
min , maxj jZ r Z r= = . (38) 

In order to reduce the potential impact of a single attribute, averaging is used to 
match the scales. The following rational options are proposed for use: 

(i) As I, take the average value of the lower level of attributes, and as the Z value, 
take the average value of the upper level 

min min max

1 1 1 1
mean , mean ,j jI r r Z r I Z= = =  . (39) 

In this case, the scales agree within the standard deviation for the mean. 
(ii) As I, take the median value of the lower level of attributes, and as the value of 

Z, take the median value of the upper level 

min min max

2 2 2 2
median , median ,j jI r r Z r I Z= = =  . (40) 

In this case, the scales are consistent within the standard deviation of the median. 
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Figure 9. Step-by-step IZ-transform of normalized values (Max). 

It is also possible to choose a choice, determined by the context of the decision-
making problem, in which the interval [I, Z] is determined by the expert: 0 ≤ I3 ≤ Z3 

≤1. 
If as [I, Z] accept [0, 1], then IZ-normalizations are similar to the result of the 

Max-Min(rij) transformation. 
An illustration of the transformation of normalized values using the IZ-method 

for various normalization methods for the choice case [I, Z] in accordance formula 
(40) is present in Figure 10. The graph additionally shows the results of aggregation 
of normalized attribute values (alternatives number's of I-III rank) using the SAW, 
TOPSIS(L2), GRA, WPM, WASPAS and COPRAS aggregation methods. Attribute 
aggregation is done with equal weights. 

 

Figure 10. Transformation of normalized values using the IZ-method for 

various normalization methods. Decision matrix D0. Aggregation of 

attributes with equal weights. 

For the first three attribute aggregation methods (SAW, TOPSIS(L2), GRA), the 
alternatives ranking results are the same for all normalization methods. According 
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to invariant property 2, in the case of aggregating attributes using a linear or 
homogeneous function, the ranking results coincide with the ranking results when 
using the Max-Min normalization (Figure 10).  

The WPM, WASPAS, and COPRAS methods use a non-linear aggregation function. 
In this case, the ranking results for different normalization methods may differ due 
to the use of different scales for measuring the normalized values (see, for example, 
the ranking results for normalization IZ-Max, IZ-dSum and IZ-Z presented in Figure 
10. Applying an IZ transformation to any set of normalized values changes the data 
structure. The disposition and range of values corresponding to the normalization 
method are saved. Thus, the IZ-transformation (and the choice of the interval [I, Z] ) 
is relevant only in the case of using non-linear aggregation methods, for example, 
WPM, WASPAS, COPRAS for rank-based MCDM models. 

5.4. MS transformation of normalized values 

When scores are measured on different scales, they may be converted to Z-scores 
to aid comparison. The Z-score produces normalized values in multiples of the 
standard deviation with a mean of 0. Therefore, the Z-score is used in many 
important applications to compare the attributes of objects in the same population. 
The appeal of Z standardization for solving MCDM problems is that in this case the 
domains of normalized values are equalized on average. This eliminates the priority 
of the contribution of individual attributes to the performance indicator of 
alternatives. 

The observed values above the mean have positive standard points, while the 
values below the mean have negative standard points (see Figure 1), which in some 
cases contradicts the logic of data analysis in the multivariate case and is a drawback 
of standardized Z-scales. For example, when using WPM (3) attribute aggregation, 
negative standard points are not allowed. 

Considering that the interval of normalized values during standardization 
includes both positive and negative values, when aggregating attributes, their 
compensation is possible (for example, for additive aggregation methods). However, 
if you transform the standardized values into the [0, 1] using linear transformations, 
then according to the invariant properties (see Section 3.2), both the disposition of 
attributes and the ranking of alternatives are preserved. For linear or homogeneous 
aggregation functions, the values of the performance indicators of the alternatives 
change strictly monotonically and the compensation of positive and negative values 
does not affect the ranking. 

Below is an algorithm for linear transformation of standardized values using the 
fixed point technique — MS-method (Mean & Standard deviation): 

Step 1. Perform the inversion (if necessary) of natural values of cost attributes 
using the ReS-algorithm. 

Step 2. Perform the standardization 

ij j

ij

j

a a
z

s

−
= , (41) 

where j
a , sj are the mean and standard deviation of the values of the j-th 

attribute, respectively. 
Step 3. Shift the values to a fixed point 

min(min( ))ij ij ij
j i

u z z= − . (42) 
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Step 4. Stretch-compressing 

/ max(max( ))ij ij ij
j i

v u u= . (43) 

Step 5. We carry out the reduction of values to the scale of the normalization 
method 

ij ijv v k=  . (44) 

Step 6. Shift all values to 1 (top level) 

1 max(max( ))ij ij ij
j i

v v v= + − . (45) 

A step-by-step illustration of MS-transformation of normalized values is shown in 
Figure 11.  

 

Figure 11. Step-by-step MS-transform. 

The mean and standard deviation for all attributes are the same (in the Figure 11 
shows footnotes of the values and the graphs show cut-offs in highlighted color). 
Step 4 transforms the values in [0, 1].  

In step 5, the values are scaled to the scale of the normalization method (as in the 
case of the IZ-method). Therefore, the scale factor k (0 <k≤1) is defined similarly: 

k Z I= − . (46) 

For k=1, the Z-score scale is valid.  
When k=1, the scale of the Max-Min normalization method takes place. For other 

normalization scales, it is proposed to use similar options as for the IZ-
transformation, defined by equations (37)–(40). An illustration of the 
transformation of normalized values using the MS-method for various options for 
choosing normalized scales for the case of choosing a scaling factor k by Eq. (5.20) is 
present in Figure 12. The graph additionally shows the results of aggregation of 
normalized attribute values (alternatives number’s of I-III rank) using the SAW,  
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Figure 12. MS transformation using various normalized scales. Decision 

matrix D0.  

TOPSIS(L2), GRA, WPM, WASPAS and COPRAS aggregation methods. Attribute 
aggregation is done with equal weights. The mean and standard deviation for all 
attributes is the same (in the Figure 12 shows footnotes of the values and in the plot, 
they are marked as cut-offs in highlighted color). For the first three methods, the 
ranking results according to the invariant property 2 do not depend on 
normalization. The COPRAS method uses a non-linear aggregation function for cost 
criteria. Considering that at the first step of the MS transformation, the values of the 
cost criteria are inverted, the results of aggregation by the COPRAS method will be 
like the SAW method. 

Thus, when MS transformation mean values and variances are the same for all 
attributes; the areas of normalized values flatten on average. Additionally, the choice 
of the measurement scale is set in accordance with the selected method of 
normalization. Eliminating negative Z-scores allows you to expand the list of 
decision-making methods. For example, the use of WPM, WASPAS methods becomes 
acceptable. 

The MS transformation (and the choice of the scaling factor k) is relevant only in 
the case of using nonlinear aggregation methods. When aggregating attributes using 
a linear or homogeneous function, the ranking results are the same as the ranking 
results when using Z-score normalization. 

5.5. Anisotropic scaling using IZ and MS transforms 

Applying IZ and MS transforms to any set of normalized values changes the range 
and relative position of attribute domains. Attribute dispositions within a domain 
are preserved. A multidimensional data cloud characterizing alternatives (objects) 
undergoes deformation in separate directions (measurement scales). A special case 
of such deformations for three attributes is shown in Figure 13 as a 3D scatter plot. 

The illustration was made for a task with three attributes. The decision matrix 
was obtained from the D0 matrix (Table 2) by excluding 2 and 4 attributes. 
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Figure 13. 3D illustration of IZ and MS transformations for 3 criteria. 

Decision matrix D0, attributes 1, 3 and 5. 

The use of IZ and MS transformations is determined by the task of harmonizing 
the measurement scales of individual attributes. The formal criterion for such a 
transformation is the elimination of the priority or contribution of individual 
attributes to the integral indicator of the alternative at the normalization stage. In 
the example shown (Figure 13), the IZ and MS transformations for Max 
normalization smooth out the slight warping that is seen in the multidimensional 
data cloud. This leads to a change in the ranking of alternatives (SAW aggregation 
method). After the transformation, the first rank changed from A3 (Max) to A1 (IZ-
Max, MS-Max). For the case of more than 3 attributes, visualization of the data cloud 
is possible using a radar chart (Chambers et al., 2018). Radar charts are primarily 
suited for strikingly showing outliers, or when one chart is greater in every variable 
than another. Radar charts are mainly used for ordinal measurements, where each 
variable is “better” in some respect and all variables are measured on the same scale, 
corresponding to normalized data.  

Visualization of the cloud of normalized and transformed data in the form of a 
radar diagram for the decision matrix D0 is present in Figure 14.  

The horizontal ray (angle 0o) corresponds to the first attribute of the D0 matrix. 
The countdown is counter clockwise. The area limited by the outer web is a 
characteristic of objects (alternatives) and correlates with the corresponding values 
of the integral indicator (for example, for the SAW method). The values of the 
reduced area in the Figure 15, are shown at the top of each fragment, and the rank of 
the alternative (SAW) is indicated in the lower left corner of the radar diagram. 

Radar charts are not well suited for making trade-off decisions — when one chart 
is better than another in some variables, but worse in others, since the contained 
area becomes proportional to the square of linear measures and this area also 
depends on the order of the attributes. However, visualization based on the radar 
diagram makes it possible to assess the degree of configuration of the data cloud and 
assess the degree of its deformation after IZ and MS transformation. This allows you 
to purposefully eliminate the priority of the contribution of individual attributes to 
the integral indicator of the alternative at the normalization stage. 

In the example shown (Figure 15), the IZ and MS transforms for Max 
normalization smooth out the slight warping that is seen in the multidimensional 
data cloud for alternatives A5 and A8. 
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Figure 14. Deformation of a cloud of data of multidimensional objects 

based on a radar diagram for IZ and MS transformations. Decision matrix 

D0. Equal weights. Fragments of the first five (by rating) alternatives.  

This leads to a change in the ranking of alternatives (SAW-method of 
aggregation). After the transformation, the A8 alternative becomes the second rank 
alternative, and the A5 alternative becomes the third rank. 

The use of weighting factors when aggregating attributes will obviously lead to 
deformation of the data cloud. Visualization of the influence of weights on the 
representation of the data cloud in the form of a radar diagram is carried out by 
adjusting the angles (sectors). In the case of equal weights (as in Figure 14), the 
angle of each sector is equal to φ=2∙π/n. For the case of different weights, the angles 
are calculated in proportion to the weight coefficients (Σωj=1). 

φj=2∙π·ωj/n. (47) 

The radar diagram for the decision matrix D0 for the case of MS-Max transformation, 
taking into account the weighting coefficients, is present in Figure 15.  

 

Figure 15. Deformation of a cloud of data of multidimensional objects 

based on a radar diagram for MS-transformation. Decision matrix D0. 

Attribute weights ω=(0.263, 0.175, 0.211, 0.105, 0.246). 
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As an expected result, the ranking of alternatives, taking into account the weights of 
attributes, has changed — alternative A5 becomes the alternative of the second rank, 
and alternative A8 — the third rank. 

6. Expanding the range of choice when using IZ and MS transformations for 

non-linear aggregation methods 

This section presents the results of ranking alternatives in the WPM aggregation 
model for two decision matrices D2 and D3 (Table 5), which are highly sensitive to IZ 
and MS transformations, respectively.  

D2 and D3 are generated in accordance with the methodology described in section 
4.2 above, based on the D0 matrix. 

Table 5. D2 and D3 decision matrices with high sensitivity to IZ and MS 

transformations. 

D2 C1+ C2‒ C3+ C4+ C5‒ D3 C1+ C2‒ C3+ C4+ C5‒ 

A1 544,6 68,4 135,0 2226,2 5640,0  512,023 54,000 183,000 1386,692 6500,000 
A2 667,0 92,0 144,7 1056,0 6246,0  667,000 79,324 139,289 1223,729 4200,000 
A3 554,7 88,8 152,4 2288,5 4200,0  505,563 66,604 143,573 2631,228 5337,549 
A4 522,4 86,5 183,0 1514,6 4430,9  539,942 64,426 135,000 2451,162 4960,494 
A5 622,8 71,4 160,5 2680,0 6500,0  581,229 92,000 172,123 2048,350 6259,448 
A6 448,0 54,0 135,6 1287,2 5858,0  535,617 68,758 159,478 2284,541 6464,639 
A7 552,1 76,3 166,1 2040,8 6282,3  448,000 89,566 135,612 2680,000 5224,235 
A8 448,0 60,0 178,1 2518,7 5910,9  578,995 62,112 164,724 1056,000 5131,603 

The ranking results using the WPM method and the values of the relative 
efficiency indicator of alternatives dQ in accordance with formula (4.1) are 
presented in the Table 6.  

Table 6. Result of ranking of the alternatives for various normalization 

models for decision matrices D2 and D3. WPM aggregation method. 

D2 Norm IZ-Norm MS-Norm 

Norm() I*) dQ1 II dQ2 III dQ3 I dQ1 II dQ2 III dQ3 I dQ1 II dQ2 III dQ3 

Max 5 1,3 8 12,7 3 9,9 5 0,8 8 9,1 3 2,9 5 5,1 8 9,3 3 5,3 

Sum 5 1,3 8 12,7 3 9,9 5 0,8 8 9,0 3 2,9 5 2,6 8 11,3 3 3,8 

Vec 5 1,3 8 12,7 3 9,9 5 0,8 8 9,0 3 2,9 5 3,3 8 10,8 3 4,3 

Max-Min 4 2,0 3 8,2 7 89,8 4 2,0 3 8,2 7 89,8 5 8,6 3 2,9 7 1,3 

dSum 8 1,1 3 8,4 4 2,5 8 0,1 5 10,5 3 2,5 5 3,8 8 10,5 3 4,6 

Z-score 5 8,6 3 2,9 7 1,3 3 1,4 4 5,2 5 6,0 5 13,3 8 0,6 3 7,1 

D3       

Max 4 5,2 3 43,2 6 40,5 4 4,8 8 0,9 3 14,8 4 0,5 8 6,6 2 3,7 

Sum 4 5,2 3 43,2 6 40,5 4 4,8 8 0,8 3 15,0 2 1,1 8 1,6 4 12,1 

Vec 4 5,2 3 43,2 6 40,5 4 4,8 8 0,9 3 14,9 8 1,1 4 0,4 2 11,5 

Max-Min 3 27,5 2 10,1 6 62,4 3 27,5 2 10,2 6 62,3 3 0,5 4 15,0 6 1,8 

dSum 4 11,3 3 22,0 2 4,4 4 5,8 8 1,3 3 11,2 8 0,7 4 2,4 2 9,2 

Z-score 3 0,5 4 15,0 6 1,8 3 22,7 4 0,6 8 9,4 4 5,1 3 4,9 8 11,8 
*) columns I, II, III contain numbers of alternatives of 1, 2, 3 ranks, respectively. (Ai, i=1,…, m). 

For four of the six options for choosing the IZ and MS transformation scale, the 
alternatives of the first rank are different (color highlighted in the Table 6). The high 
sensitivity of the rating to the values of the decision matrix (local priorities of 
alternatives) is characterized by a low value of dQ. This means that the alternatives 
are hardly distinguishable. If we take the values dQ<5% as the lower limit of 
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distinguishability, then in 14 out of 18 variants (according to the Table 6) the 
alternatives of the first and second ranks for the matrix D2 are indistinguishable. 
Similarly, alternatives of the first and second ranks for the matrix D3 are 
indistinguishable in 9 cases out of 18. Several alternatives claim the role of 
alternatives of the first rank: A5, A3, A4 and A8 for the problem with the decision 
matrix D2, and A2, A3, A4 and A8 for the problem with decision matrix D3. 

To expand the spectrum of analysis, we introduce the aggregation models SAW, 
TOPSIS(L2), GRA, WPM, WASPAS, and COPRAS into consideration. Combining them 
with 6 basic linear methods of normalization allows you to perform ranking for 36 
different models. Introduction to the consideration of IZ transformations in six 
different types of normalization measurement scales expands the range of options 
for non-linear aggregation methods WPM, WASPAS and COPRAS by another 18 
models. Introduction to the consideration of MS transformations of normalized 
values in six options expands the range of options for non-linear aggregation 
methods WPM, WASPAS by another 12 models. The distribution diagram of the 
rating of alternatives for the decision matrix D2 is present in Figure 16. 

 

Figure 16. Distribution of rating of alternatives in 66 aggregation-

normalization models. Decision matrix D2. Equal attribute weights. 

Given the absence of a formal criterion for assessing the priority of any 
normalization method for decision matrix, or attribute aggregation method, the 
choice of an alternative is not unambiguous. As shown in Section 4.2, the scatter of 
results is largely determined not only by the choice of aggregation method and 
normalization method, but also by the local priorities of alternatives for various 
attributes, determined by the initial values of the decision matrix. 

The result of such an analysis is to recommend to the decision maker several 
options. In the case of the problem defined by the matrix D2, in accordance with the 
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results in the Figure 16 are recommended for selection, in descending order of the 
share of the first places, alternatives A5, A8, A3 and A4. 

7. Conclusion 

Weak formalization of rank models MCDM requires a comprehensive analysis 
using various methods of aggregation and normalization and sensitivity analysis of 
decisions. A critical analysis of multivariate normalization methods allows us to 
conclude that in the absence of criteria, the preference for certain normalizations is 
relative. As shown in the article, the result of the ranking of alternatives depends on 
the ratio between the values of the original decision matrix and is determined by the 
local priorities of the alternatives according to various criteria. In such a situation, it 
is advisable to ensure the equality of the contributions of various criteria to the 
indicator of the effectiveness of alternatives. The ReS, IZ and MS transformations 
proposed in the article transform the normalized values to a conditionally general 
scale [I; Z], which is an important and key aspect of matching scales for measuring 
individual features in multivariate data normalization. The formal criterion for such 
a transformation is the elimination of the priority or contribution of individual 
features to the integral indicator of the alternative at the stage of normalization. All 
three methods use an independent transformation of the normalized values of 
various attributes. Therefore, the limitation of the application is the 
interdependence of the criteria. The ReS-algorithm is universal when inverting the 
range of cost criteria for all normalization methods. IZ and MS methods is relevant 
for non-linear methods of feature aggregation. When using MS-transforms for MCDM 
tasks, it is necessary to make sure that there are no significant outliers in the original 
set observations. The choice of scale factors or the range of normalized values when 
performing the proposed transformations is ambiguous and requires additional 
research. In the present study, we relied on a meaningful interpretation of the 
proportion of a trait on the chosen normalization method.  
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