Mapping the Evolution of Multi-Attributive Border Approximation Area Comparison Method: A Bibliometric Analysis

Authors

DOI:

https://doi.org/10.31181/dmame7120241037

Keywords:

MABAC, Bibliometric Analysis, Biblioshiny, VOSviewer

Abstract

This paper presents a comprehensive bibliometric analysis of Multi-Attributive Border Approximation Area Comparison (MABAC) method using the Biblioshiny application of the bibliometrix package, R program and VOSviewer tools to provide a holistic view of the research landscape by identifying its evolution, major contributors and most influential research areas. The study, analyzing 264 articles from the Scopus database (January 2015 to September 2023), reveals China as the leading contributor, with India spearheading international collaboration. The most impactful publication, "The selection of transport and handling resources in logistics centres using MABAC," by Pamučar and Ćirović [2], boasts 537 citations. Notably, the "University of Defence in Belgrade" is a prominent institution in this domain. "Pamučar D" emerges as the most cited author. Key terms include "MABAC," "MABAC method," and "MCDM," commonly associated with MABAC method. The top three cited journals are "Expert Systems with Applications," "Decision Making: Applications in Management And Engineering," and "Symmetry." The study provides valuable insights for researchers, practitioners, and decision-makers interested in MABAC's applications and future developments in MCDM, contributing to ongoing discussions about its relevance.

Downloads

Download data is not yet available.

References

Koca, G., & Yıldırım, S. (2021). Bibliometric analysis of DEMATEL method. Decision Making: Applications in Management and Engineering, 4(1), 85–103. https://doi.org/10.31181/dmame2104085g

Pamučar D., & Ćirović G. (2015). The Selection of Transport and Handling Resources in Logistics Centers Using Multi-Attributive Border Approximation Area Comparison (MABAC). Expert Systems with Applications, 42(6), 3016- 3028. https://doi.org/10.1016/j.eswa.2014.11.057

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, R. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. https://doi.org/10.1016/0270-0255(87)90473-8

Saaty, T. L. (2004). Decision making - the Analytic Hierarchy and Network Processes (AHP/ANP). Journal of Systems Science and Systems Engineering, 13(1), 1-35. https://doi.org/10.1007/s11518-006-0151-5

Fontela, E., & Gabus, A. (1974). DEMATEL, Innovative Methods. Report No. 2, Structural analysis of the world problematique. Battelle Geneva Research Institute (Battelle Memorial Institute).

Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry, 10(9), 393. https://doi.org/10.3390/sym10090393

Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009

Zakeri, S., Ecer, F., Konstantas, D., & Cheikhrouhou, N. (2021). The vital-immaterial-mediocre multicriteria decision-making method. Kybernetes. https://doi.org/10.1108/K-05-2021-0403

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Diakoulaki, D., Mavrotas, G., & Lefteris, P. (1995). Determining objective weights in multiple criteria problems: The CRITIC method. Computers & Operations Research, 22 (7), 763-770. https://doi.org/10.1016/0305-0548(94)00059-H

Žižović, M., & Pamučar, D. (2019). New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decision Making, 2(2). https://doi.org/10.31181/dmame1902102z

Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525

Zavadskas, E. K., & Podvezko, V. (2016). Integrated Determination of Objective Criteria weights in MCDM. International Journal of Information Technology and Decision Making, 15(02), 267–283. https://doi.org/10.1142/s0219622016500036

Paramanik, A. R., Sarkar, S., & Sarkar, B. (2022). OSWMI: An objective-subjective weighted method for minimizing inconsistency in multi-criteria decision-making. Computers & Industrial Engineering, 169, 108138. https://doi.org/10.1016/j.cie.2022.108138

Demir, G., Chatterjee, P., & Pamučar, D. (2024). Sensitivity Analysis in Multi-Criteria Decision Making: A State-of-the-Art Research Perspective Using Bibliometric Analysis. Expert Systems with Applications, 237, 121660. https://doi.org/10.1016/j.eswa.2023.121660

Keeney, R.L. & Raiffa, H. (1976). Decisions with multiple objectives: preferences and value trade-offs. John Wiley & Sons, New York.

Hwang, C.L. & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-3-642-48318-9

Zavadskas, E.K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological and Economic Development of Economy. 16(2), 159-172. https://doi.org/10.3846/tede.2010.10

Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Computers & industrial engineering, 140, 106231. https://doi.org/10.1016/j.cie.2019.106231

Puška, A., Stević, Ž., & Pamučar, D. (2022). Evaluation and selection of healthcare waste incinerators using extended sustainability criteria and multi-criteria analysis methods. Environment, Development and Sustainability, 24(9), 11195-11225. https://doi.org/10.1007/s10668-021-01902-2

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of Weighted Aggregated Sum Product Assessment. Elektronika Ir Elektrotechnika, 122(6), 3-6. https://doi.org/10.5755/j01.eee.122.6.1810

Pamučar, D., Vasin, L., & Lukovac, L. (2014, October). Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model. In XVI international scientific-expert conference on railway, railcon (pp. 89-92). https://doi.org/10.13140/2.1.2707.6807

Gomes, L. F. A. M. & Lima M. M. P. P. (1992). From Modeling Individual Preferences to Multicriteria Ranking of Discrete Alternatives: A Look at Prospect Theory and The Additive Difference Model. Foundations of Computing and Decision Sciences, 17(3), 171-184. https://doi.org/10.2478/v10209-011-0001-1

Yazdani, M., Zarate, P., Kazimieras Zavadskas, E. & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9). https://doi.org/10.1108/MD-05-2017-0458

Mishra, A. R., Rani, P., Saha, A., Hezam, I. M., Marinović, M. & Pandey, K. (2022). Assessing the Adaptation of Internet of Things (IoT) Barriers for Smart Cities’ Waste Management Using Fermatean Fuzzy Combined Compromise Solution Approach. IEEE Access, 10. https://doi.org/10.1109/ACCESS.2022.3164096

Zaliluddin, D. (2023). Bibliometric Analysis of Accuracy of Multi-Criteria Decision Making (MCDM) of Assistance Recipients with Fuzzy Logic Algorithm. West Science Interdisciplinary Studies, 1(07), 329-339. https://doi.org/10.58812/wsis.v1i07.82

Vatankhah, S., Darvishmotevali, M., Rahimi, R., Jamali, S. M., & Ale Ebrahim, N. (2023). MCDM in travel and tourism research since 1997: A bibliometric approach. International Journal of Contemporary Hospitality Management. http://dx.doi.org/10.2139/ssrn.4324990

Liao, H., Yang, S., Kazimieras Zavadskas, E., & Škare, M. (2023). An overview of fuzzy multi-criteria decision-making methods in hospitality and tourism industries: bibliometrics, methodologies, applications and future directions. Economic Research-Ekonomska Istraživanja, 36(3), 2150871. https://doi.org/10.1080/1331677X.2022.2150871

Herawan, T., Arsyad, S., Widodo, W. I., Adiyanti, A. S., Damiasih, D., Ashartono, R., & Sâri, E. N. (2023). A Decade Bibliometric Analysis of Decision Making in Tourism and Hospitality. In International Conference on Computational Science and Its Applications (pp. 17-36). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37126-4_2

Nirmal, D. D., Nageswara Reddy, K., & Singh, S. K. (2023). Application of fuzzy methods in green and sustainable supply chains: critical insights from a systematic review and bibliometric analysis. Benchmarking: An International Journal. https://doi.org/10.1108/BIJ-09-2022-0563

Sohail, S. S., Javed, Z., Nadeem, M., Anwer, F., Farhat, F., Hussain, A., Himeur, Y. & Madsen, D. Ø. (2023). Multi-criteria decision making-based waste management: A bibliometric analysis. Heliyon 9. e21261. https://doi.org/10.1016/j.heliyon.2023.e21261

Xu, D., & Xu, Z. (2023). Bibliometric analysis of decision-making in healthcare management from 1998 to 2021. International Journal of Healthcare Management, 16(4), 623-637. https://doi.org/10.1080/20479700.2022.2134641

Ayan, B. & Abacıoğlu, S. (2022). Bibliometric analysis of the MCDM methods in the last decade: WASPAS, MABAC, EDAS, CODAS, CoCoSo and MARCOS. International Journal of Business and Economic Studies, 4(2), 65-85. https://doi.org/10.54821/uiecd.1183443

Ferreira, F. A., & Santos, S. P. (2021). Two decades on the MACBETH approach: a bibliometric analysis. Annals of Operations Research, 296(1), 901–925. https://doi.org/10.1007/s10479-018-3083-9

Chen, Y., Jin, Q., Fang, H., Lei, H., Hu, J., Wu, Y., Chen, J., Wang, C., & Wan, Y. (2019). Analytic network process: Academic insights and perspectives analysis. Journal of Cleaner Production, 235, 1276–1294. https://doi.org/10.1016/j.jclepro.2019.07.016

Zyoud, S. H., & Fuchs-Hanusch, D. (2017). A bibliometric-based survey on AHP and TOPSIS techniques. Expert Systems with Applications, 78, 158–181. https://doi.org/10.1016/j.eswa.2017.02.016

Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, 12(4), 1160-1177. https://doi.org/10.1016/j.joi.2018.09.002

Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053-1070. https://doi.org/10.1007/s11192-017-2300-7

Peng, X. & Yang, Y. (2016). Pythagorean Fuzzy Choquet Integral Based MABAC Method for Multiple Attribute Group Decision Making. International Journal of Intelligent Systems, 31(10), 989-1020. https://doi.org/10.1002/int.21814

Gigović, L., Pamučar, D., Božanić, D., & Ljubojević, S. (2017). Application of the GIS-DANP-MABAC multi-criteria model for selecting the location of wind farms: A case study of Vojvodina, Serbia. Renewable Energy, 103, 501–521. https://doi.org/10.1016/j.renene.2016.11.057

Pamučar, D., Petrović, I., & Ćirović, G. (2018). Modification of the Best–Worst and MABAC methods: A novel approach based on interval-valued fuzzy-rough numbers. Expert Systems With Applications, 91, 89–106. https://doi.org/10.1016/j.eswa.2017.08.042

Peng, X., & Dai, J. (2016). Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Computing and Applications, 29(10), 939–954. https://doi.org/10.1007/s00521-016-2607-y

Pamučar, D., Mihajlović, M., Obradović, R., & Atanasković, P. (2017). Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-MAIRCA model. Expert Systems With Applications, 88, 58–80. https://doi.org/10.1016/j.eswa.2017.06.037

Xue, Y., You, J., Liu, X., & Liu, H. (2016). An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information. Applied Soft Computing, 38, 703–713. https://doi.org/10.1016/j.asoc.2015.10.010

Şennaroğlu, B., & Celebi, G. V. (2018). A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment, 59, 160–173. https://doi.org/10.1016/j.trd.2017.12.022

Gupta, S., Soni, U., & Kumar, G. (2019). Green supplier selection using multi-criterion decision making under fuzzy environment: A case study in automotive industry. Computers & Industrial Engineering, 136, 663–680. https://doi.org/10.1016/j.cie.2019.07.038

Published

2024-01-01

How to Cite

Demir, G., Chatterjee, P., Zakeri, S., & Pamucar, D. (2024). Mapping the Evolution of Multi-Attributive Border Approximation Area Comparison Method: A Bibliometric Analysis. Decision Making: Applications in Management and Engineering, 7(1), 290–314. https://doi.org/10.31181/dmame7120241037