Optimizing Healthcare Business Processes with Process Mining Software: A Comparative Analysis
DOI:
https://doi.org/10.31181/dmame7220241070Keywords:
Healthcare Process Optimization, Process Mining Software, Multi-Criteria Decision Making, Neural Network Augmented Analytic Hierarchy Process, Grey Relational AnalysisAbstract
This study focuses on the application of process mining in the healthcare sector. Despite its potential to enhance efficiency, reduce costs, and improve patient satisfaction, the selection of process-mining software poses significant challenges due to the diverse nature of healthcare processes and the lack of comprehensive evaluation methods. To bridge this gap, this study employed a hybrid Multi-Criteria Decision-Making (MCDM) approach, integrating the Neural Network-Augmented Analytical Hierarchy Process (NNA-AHP) and Grey Relational Analysis—a technique for Order Preference by Similarity to Ideal Solution (GRA-TOPSIS). The study evaluated process mining software on functionalities, ease of use, cost, technical support, scalability, and security with their respective sub-criteria. The principal results indicate that Disco is the top-performing alternative, followed by Celonis and ProM. Sensitivity analysis was conducted to understand the influence of variations in criteria weights on evaluating alternatives. In the NNA-AHP, Celonis consistently scored the highest. The GRA-TOPSIS method provided performance scores, indicating that higher scores yield better performance. The new hybrid method consolidates evaluations from all methods and offers the most comprehensive and dependable alternative assessment. Disco and its alternatives, Celonis and ProM, are recommended for optimizing healthcare processes. Further research is needed to investigate the integration of NNA-AHP and GRA-TOPSIS in healthcare management, especially in areas beyond business process analysis. This study provides valuable insights for professionals and researchers in the field and contributes to understanding the effectiveness of process mining.
Downloads
References
Guzzo, A., Rullo, A., & Vocaturo, E. (2022). Process mining applications in the healthcare domain: A comprehensive review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(2), e1442. https://doi.org/10.1002/widm.1442
Gurgen Erdogan, T., & Tarhan, A. (2018). A goal-driven evaluation method based on process mining for healthcare processes. Applied Sciences, 8(6), 894. https://doi.org/10.3390/app8060894
Batista, E., & Solanas, A. (2018). Process mining in healthcare: a systematic review. In 2018 9th international conference on information, intelligence, systems and applications (IISA) (pp. 1-6). IEEE. https://doi.org/10.1109/IISA.2018.8633608
Chaydy, N., & Madani, A. (2019). An overview of Process Mining and its applicability to complex, real-life scenarios. In 2019 International Conference on Systems of Collaboration Big Data, Internet of Things & Security (SysCoBIoTS) (pp. 1-9). IEEE. https://doi.org/10.1109/SysCoBIoTS48768.2019.9028024
Andrews, R., Wynn, M. T., Vallmuur, K., Ter Hofstede, A. H., & Bosley, E. (2020). A comparative process mining analysis of road trauma patient pathways. International journal of environmental research and public health, 17(10), 3426. https://doi.org/10.3390/ijerph17103426
Lorenz, R., Senoner, J., Sihn, W., & Netland, T. (2021). Using process mining to improve productivity in make-to-stock manufacturing. International Journal of Production Research, 59(16), 4869-4880. https://doi.org/10.1080/00207543.2021.1906460
De Roock, E., & Martin, N. (2022). Process mining in healthcare–An updated perspective on the state of the art. Journal of biomedical informatics, 127, 103995. https://doi.org/10.1016/j.jbi.2022.103995
Adhikari, D., Gazi, K. H., Giri, B. C., Azizzadeh, F., & Mondal, S. P. (2023). Empowerment of women in India as different perspectives based on the AHP-TOPSIS inspired multi-criterion decision making method. Results in Control and Optimization, 12, 100271. https://doi.org/10.1016/j.rico.2023.100271
Momena, A. F., Mandal, S., Gazi, K. H., Giri, B. C., & Mondal, S. P. (2023). Prediagnosis of disease based on symptoms by generalized dual hesitant hexagonal fuzzy multi-criteria decision-making techniques. Systems, 11(5), 231. https://doi.org/10.3390/systems11050231
Yue, W., Wang, Z., Zhang, J., & Liu, X. (2021). An overview of recommendation techniques and their applications in healthcare. IEEE/CAA Journal of Automatica Sinica, 8(4), 701-717. https://doi.org/10.1109/JAS.2021.1003919
Dallagassa, M. R., Iachecen, F., Furlan, L. H. P., Ioshii, S. O., & de Carvalho, D. R. (2022). Applying process mining in health technology assessment. Health and Technology, 12, 931–941. https://doi.org/10.1007/s12553-022-00692-5
Khan, I., Pintelon, L., & Martin, H. (2022). The application of multicriteria decision analysis methods in health care: a literature review. Medical Decision Making, 42(2), 262-274. https://doi.org/10.1177/0272989X211019040
Neu, D. A., Lahann, J., & Fettke, P. (2022). A systematic literature review on state-of-the-art deep learning methods for process prediction. Artificial Intelligence Review, 55(2), 801-827 . https://doi.org/10.1007/s10462-021-09960-8
Kuhn, T., Bruhin, J., & Hill, T. (2021). Making Processes Patient-Centric: Process Standardization and Automation in the Healthcare Sector at Hirslanden AG. In Business Process Management Cases Vol. 2: Digital Transformation-Strategy, Processes and Execution (pp. 221-233). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-63047-1_17
Brancalion, F. N. M., & Lima, A. F. C. (2022). Process-based Management aimed at improving health care and financial results. Revista da Escola de Enfermagem da USP, 56, e20210333. https://doi.org/10.1590/1980-220X-REEUSP-2021-0333en
Mohammadi, F., Kazempourian, S., & Vanani, I. R. (2023). Process mining approach to performance analysis and bottleneck finding in electronic processes (case study: the billing process of hospital services). International Journal of Process Management and Benchmarking, 13(2), 212-232. https://doi.org/10.1504/IJPMB.2023.128472
Kusuma, G. P., Hall, M., Gale, C. P., & Johnson, O. A. (2018). Process mining in cardiology: a literature review. International Journal of Bioscience, Biochemistry and Bioinformatics, 8(4), 226-236. https://doi.org/10.17706/IJBBB.2018.8.4.226-236
Martin, N., De Weerdt, J., Fernández-Llatas, C., Gal, A., Gatta, R., Ibáñez, G., ... & Van Acker, B. (2020). Recommendations for enhancing the usability and understandability of process mining in healthcare. Artificial Intelligence in Medicine, 109, 101962. https://doi.org/10.1016/j.artmed.2020.101962
Pereira, G. B., Santos, E. A. P., & Maceno, M. M. C. (2020). Process mining project methodology in healthcare: a case study in a tertiary hospital. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 28. https://doi.org/10.1007/s13721-020-00227-w
Pika, A., Wynn, M. T., Budiono, S., Ter Hofstede, A. H., van der Aalst, W. M., & Reijers, H. A. (2020). Privacy-preserving process mining in healthcare. International journal of environmental research and public health, 17(5), 1612. https://doi.org/10.3390/ijerph17051612
Kurniati, A. P., Rojas, E., Zucker, K., Hall, G., Hogg, D., & Johnson, O. (2021). Process mining to explore variations in endometrial cancer pathways from GP referral to first treatment. Public Health and Informatics, (pp.769 – 773). IOS Press. https://doi.org/10.3233/SHTI210279
Saini, A. K., Kamra, R., and Shrivastava, U. (2021). Conformance checking techniques of process mining: A survey. In Recent trends in intensive computing (pp. 335 - 341). IOS Press. https://doi.org/10.3233/APC210213
Celik, U., & Akçetin, E. (2018). Process mining tools comparison. Online Academic Journal of Information Technology, 9(34), 97-104. https://doi.org/10.5824/1309-1581.2018.4.007.x
Gielstra, E. (2016). The Design of a Methodology for the Justification and Implementation of Process Mining. Available at SSRN 2761939. https://doi.org/10.2139/ssrn.2761939
Céspedes-González, Y., Valdes, J. J., Molero-Castillo, G., & Arieta-Melgarejo, P. (2020). Design of an analysis guide for user-centered process mining projects. In Advances in Information and Communication: Proceedings of the 2019 Future of Information and Communication Conference (FICC), Volume 1 (pp. 667-682). Springer International Publishing. https://doi.org/10.1007/978-3-030-12388-8_47
Van der Aalst, W. (2016). Process mining: data science in action (Vol. 2). Springer. https://doi.org/10.1007/978-3-662-49851-4
Berti, A., Van Zelst, S. J., & van der Aalst, W. (2019). Process mining for python (PM4Py): bridging the gap between process-and data science. arXiv preprint arXiv:1905.06169. https://doi.org/10.48550/arXiv.1905.06169
Narayana, M. B. S., Benevento, E., Pegoraro, M., Abdullah, M., Shahid, R. B., Sajid, Q., Mansoor, M. U., & van der Aalst, W. M. P. (2022). A Web-Based Tool for Comparative Process Mining. arXiv preprint arXiv:2204.00547. https://doi.org/10.48550/arXiv.2204.00547
Van der Aalst, W. M. (2022). Process mining: a 360 degree overview. In Process Mining Handbook (pp. 3-34). Springer, Cham. https://doi.org/10.1007/978-3-031-08848-3_1
Drakoulogkonas, P., & Apostolou, D. (2021). On the selection of process mining tools. Electronics, 10(4), 451. https://doi.org/10.3390/electronics10040451
Van der Aalst, W. (2016). Process mining software. Process Mining: Data Science in Action, 325-352. https://doi.org/10.1007/978-3-662-49851-4_11
Kesici, C. A., Ozkan, N., Taşkesenlioglu, S., & Erdogan, T. G. (2022). A Systematic Literature Review of Studies Comparing Process Mining Tools. International Journal of Information Technology and Computer Science, 14(5), 1-14. https://doi.org/10.5815/ijitcs.2022.05.01
Drakoulogkonas, P., & Apostolou, D. (2019). A comparative analysis methodology for process mining software tools. In International Conference on Knowledge Science, Engineering and Management (pp. 751-762). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-29551-6_66
Urrea-Contreras, S. J., Flores-Rios, B. L., Astorga-Vargas, M. A., & Ibarra-Esquer, J. E. (2021). Process mining perspectives in software engineering: A systematic literature review. In 2021 Mexican International Conference on Computer Science (ENC) (pp. 1-8). IEEE. https://doi.org/10.1109/ENC53357.2021.9534824
Elhadjamor, E. A., & Ghannouchi, S. A. (2019). Analyze in depth health care business process and key performance indicators using process mining. Procedia Computer Science, 164, 610-617. https://doi.org/10.1016/j.procs.2019.12.227
Improta, G., Converso, G., Murino, T., Gallo, M., Perrone, A., & Romano, M. (2019). Analytic hierarchy process (AHP) in dynamic configuration as a tool for health technology assessment (HTA): the case of biosensing optoelectronics in oncology. International Journal of Information Technology & Decision Making, 18(05), 1533-1550. https://doi.org/10.1142/S0219622019500263
Martinez-Millana, A., Lizondo, A., Gatta, R., Vera, S., Salcedo, V. T., & Fernandez-Llatas, C. (2019). Process mining dashboard in operating rooms: Analysis of staff expectations with analytic hierarchy process. International journal of environmental research and public health, 16(2), 199. https://doi.org/10.3390/ijerph16020199
Batra, P., Sethi, S., & Kandoi, K. (2023). Analysis and Evaluation of Medical Care Data using Analytic Fuzzy Process. In 2023 2nd International Conference for Innovation in Technology (INOCON) (pp. 1-7). IEEE. https://doi.org/10.1109/INOCON57975.2023.10101089
Gazi, K. H., Mondal, S. P., Chatterjee, B., Ghorui, N., Ghosh, A., & De, D. (2023). A new synergistic strategy for ranking restaurant locations: A decision-making approach based on the hexagonal fuzzy numbers. RAIRO-operations research, 57(2), 571-608. https://doi.org/10.1051/ro/2023025
Mesabbah, M., Abo-Hamad, W., and McKeever, S. (2019). A hybrid process mining framework for automated simulation modelling for healthcare. In 2019 Winter, Simulation Conference (WSC) (pp. 1094–1102). https://doi.org/10.1109/WSC40007.2019.9004800
Boonsothonsatit, G., Vongbunyong, S., Chonsawat, N., & Chanpuypetch, W. (2024). Development of a Hybrid AHP-TOPSIS Decision-Making Framework for Technology Selection in Hospital Medication Dispensing Processes. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3348754
Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., DasSarma, N., ... & Kaplan, J. (2022). Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862. https://doi.org/10.48550/arxiv.2204.05862
Qian, S., Liu, H., Liu, C., Wu, S., & San Wong, H. (2018). Adaptive activation functions in convolutional neural networks. Neurocomputing, 272, 204-212. https://doi.org/10.1016/j.neucom.2017.06.070
Yadav, S. K., Joseph, D., & Jigeesh, N. (2018). A review on industrial applications of TOPSIS approach. International Journal of Services and Operations Management, 30(1), 23-28. https://doi.org/10.1504/IJSOM.2018.10012402
Tian, Z. P., Zhang, H. Y., Wang, J. Q., & Wang, T. L. (2018). Green supplier selection using improved TOPSIS and best-worst method under intuitionistic fuzzy environment. Informatica, 29(4), 773-800. https://doi.org/10.15388/Informatica.2018.192
Liu, X., & Wang, L. (2020). An extension approach of TOPSIS method with OWAD operator for multiple criteria decision-making. Granular Computing, 5, 135-148. https://doi.org/10.1007/s41066-018-0131-4
Demircioğlu, M. E., & Ulukan, H. Z. (2020). A novel hybrid approach based on intuitionistic fuzzy multi criteria group-decision making for environmental pollution problem. Journal of Intelligent & Fuzzy Systems, 38(1), 1013-1025. https://doi.org/10.3233/JIFS-179465
Yadav, S. K., Joseph, D., & Jigeesh, N. (2018). A review on industrial applications of TOPSIS approach. International Journal of Services and Operations Management, 30(1), 23-28. https://doi.org/10.1504/IJSOM.2018.091438
Kim, E., Kim, S., Song, M., Kim, S., Yoo, D., Hwang, H., & Yoo, S. (2013). Discovery of outpatient care process of a tertiary university hospital using process mining. Healthcare informatics research, 19(1), 42. https://doi.org/10.4258/hir.2013.19.1.42
Xu, X., & Liu, X. (2020). Fault diagnosis method for wind turbine gearbox based on image characteristics extraction and actual value negative selection algorithm. International Journal of Pattern Recognition and Artificial Intelligence, 34(14), 2054034. https://doi.org/10.1142/S0218001420540348
Quan, H., Li, S., Wei, H., & Hu, J. (2019). Personalized product evaluation based on GRA-TOPSIS and Kansei engineering. Symmetry, 11(7), 867. https://doi.org/10.3390/sym11070867
Wang, K., Feng, G., Shi, Q., & Zeng, S. (2023). An Entropy-GRA-TOPSIS model for evaluating the quality of enterprises’ green information disclosure from the perspective of green financing. Granular Computing, 8(6), 1783-1797. https://doi.org/10.1007/s41066-023-00401-1
Rajak, M., & Shaw, K. (2019). Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS. Technology in Society, 59, 101186. https://doi.org/10.1016/j.techsoc.2019.101186
Czekster, R. M., Webber, T., Jandrey, A. H., & Marcon, C. A. M. (2019). Selection of enterprise resource planning software using analytic hierarchy process. Enterprise Information Systems, 13(6), 895-915. https://doi.org/10.1080/17517575.2019.1606285
Ulkhaq, M. M., Wijayanti, W. R., Zain, M. S., Baskara, E., & Leonita, W. (2018). Combining the AHP and TOPSIS to evaluate car selection. In Proceedings of the 2nd International Conference on High Performance Compilation, Computing and Communications (pp. 112-117). https://doi.org/10.1145/3195612.3195628
Liu, J., Vatn, J., & Yin, S. (2023). Optimizing Digital Twin Design Through a QFD and AHP-Based Selection Methodology. In IECON 2023-49th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE. https://doi.org/10.1109/IECON51785.2023.10312389
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.