Integrating Blockchain in Scheduling: A Comprehensive Review of Current Trends and Future Directions
DOI:
https://doi.org/10.31181/dmame7220241087Keywords:
Scheduling, Blockchain, Service, Manufacturing, Project, ManagementAbstract
This review paper offers a comprehensive exploration of blockchain technology's integration in scheduling activities across various industries. It systematically gathered and analyzed literature, identifying 133 relevant documents through rigorous screening from 2017 till 2023. The bibliometric analysis, including co-authorship and co-occurrence maps, revealed key trends, influential authors, and emerging research areas. Content analysis focused on blockchain applications in service optimization, system and resource planning, management, project and production planning, energy optimization, and security enhancement. The research acknowledged significant advancements in these areas, particularly in terms of improved efficiency, transparency, and security. The findings underscore the potential of blockchain in revolutionizing scheduling and management processes across different sectors, highlighting the need for further exploration of its applications and implications in various professional contexts. The paper aims to bridge the gap in the literature by presenting a holistic view of blockchain's role in advancing scheduling methods, driving innovation, and fostering more robust, efficient, and transparent scheduling systems across industries.
Downloads
References
Habib, G., Sharma, S., Ibrahim, S., Ahmad, I., Qureshi, S., & Ishfaq, M. (2022). Blockchain technology: benefits, challenges, applications, and integration of blockchain technology with cloud computing. Future Internet, 14(11), 341. https://doi.org/10.3390/fi14110341
Gad, A. G., Mosa, D. T., Abualigah, L., & Abohany, A. A. (2022). Emerging trends in blockchain technology and applications: A review and outlook. Journal of King Saud University-Computer and Information Sciences, 34(9), 6719-6742. https://doi.org/10.1016/j.jksuci.2022.03.007
Blockchain statistics. (2023). 79+ Blockchain statistics, facts, and trends (2023). Retrieved from https://buybitcoinworldwide.com/blockchain-statistics/
Li, M., Shen, L., & Huang, G. Q. (2019). Blockchain-enabled workflow operating system for logistics resources sharing in E-commerce logistics real estate service. Computers & Industrial Engineering, 135, 950-969. https://doi.org/10.1016/j.cie.2019.07.003
Mohammed, M. A., Lakhan, A., Abdulkareem, K. H., Zebari, D. A., Nedoma, J., Martinek, R.,Kadry, S., & Garcia-Zapirain, B. (2023). Energy-efficient distributed federated learning offloading and scheduling healthcare system in blockchain based networks. Internet of Things, 22, 100815. https://doi.org/10.1016/j.iot.2023.100815
Zeng, M., Sadeghzadeh, K., & Xiong, T. (2023). A three-echelon based sustainable supply chain scheduling decision-making framework under the blockchain environment. International Journal of Production Research, 61(14), 4951-4971. https://doi.org/10.1080/00207543.2022.2059719
Celesti, A., Ruggeri, A., Fazio, M., Galletta, A., Villari, M., & Romano, A. (2020). Blockchain-based healthcare workflow for tele-medical laboratory in federated hospital IoT clouds. Sensors, 20(9), 2590. https://doi.org/10.3390/s20092590
Belhi, A., Gasmi, H., Hammi, A., Bouras, A., Aouni, B., & Khalil, I. (2022). A broker-based manufacturing supply chain integration with blockchain: Managing odoo workflows using hyperledger fabric smart contracts. In IFIP International Conference on Product Lifecycle Management (pp. 371-385). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-94399-8_27
Ramakurthi, V. B., Manupati, V. K., Varela, L., & Putnik, G. (2023). Leveraging Blockchain to Support Collaborative Distributed Manufacturing Scheduling. Sustainability 2023, 15, 3283. https://doi.org/10.3390/su15043283
Al-Refaie, A., Al-Hawadi, A., & Lepkova, N. (2022). Blockchain design with optimal maintenance planning. Buildings, 12(11), 1902. https://doi.org/10.3390/buildings12111902
Ghiro, L., Restuccia, F., D'Oro, S., Basagni, S., Melodia, T., Maccari, L., & Cigno, R. L. (2021). What is a Blockchain? A Definition to Clarify the Role of the Blockchain in the Internet of Things. arXiv preprint arXiv:2102.03750. https://doi.org/10.48550/arXiv.2102.03750
Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., Sterna, M., & Węglarz, J. (2019). Handbook on scheduling: From theory to practice. Springer. https://doi.org/10.1007/978-3-319-99849-7
Wilson, J. M. (2003). Gantt charts: A centenary appreciation. European Journal of Operational Research, 149(2), 430-437. https://doi.org/10.1016/S0377-2217(02)00769-5
Carruthers, J. A., & Battersby, A. (1966). Advances in critical path methods. Journal of the Operational Research Society, 17(4), 359-380. https://doi.org/10.1057/jors.1966.72
Agyei, W. (2015). Project planning and scheduling using PERT and CPM techniques with linear programming: Case study. International Journal of Scientific & Technology Research, 4(8), 222-227.
Kabeyi, M. J. B. (2019). Evolution of project management, monitoring and evaluation, with historical events and projects that have shaped the development of project management as a profession. International Journal of Science and Research, 8(12), 63-79.
Da Col, G., & Teppan, E. C. (2022). Industrial-size job shop scheduling with constraint programming. Operations Research Perspectives, 9, 100249. https://doi.org/10.1016/j.orp.2022.100249
Yamashiro, H., & Nonaka, H. (2021). Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem. Operations Research Perspectives, 8, 100196. https://doi.org/10.1016/j.orp.2021.100196
Xu, G., Lin, Y., Wu, Z., Chen, Q., & Mao, N. (2023). Research on the scheduling method of ground resource under uncertain arrival time. Operations Research Perspectives, 11, 100291. https://doi.org/10.1016/j.orp.2023.100291
Schnell, A., & Hartl, R. F. (2017). On the generalization of constraint programming and boolean satisfiability solving techniques to schedule a resource-constrained project consisting of multi-mode jobs. Operations Research Perspectives, 4, 1-11. https://doi.org/10.1016/j.orp.2017.01.002
He, F., Chaussalet, T., & Qu, R. (2019). Controlling understaffing with conditional Value-at-Risk constraint for an integrated nurse scheduling problem under patient demand uncertainty. Operations Research Perspectives, 6, 100119. https://doi.org/10.1016/j.orp.2019.100119
Vijindra, & Shenai, S. (2012). Survey on scheduling issues in cloud computing. Procedia Engineering, 38, 2881-2888. https://doi.org/10.1016/j.proeng.2012.06.337
Jin, M., Dou, C., Pan, P., Wan, M., Sun, B., & Zhang, W. (2020). A Blockchain-Based IoT Workflow Management Approach. In Big Data and Security: First International Conference, ICBDS 2019, Nanjing, China, December 20–22, 2019, Revised Selected Papers 1 (pp. 633-644). Springer Singapore. https://doi.org/10.1007/978-981-15-7530-3_48
Balon, B., Kalinowski, K., & Paprocka, I. (2023). Production planning using a shared resource register organized according to the assumptions of blockchain technology. Sensors, 23(4), 2308. https://doi.org/10.3390/s23042308
Lakhan, A., Mohammed, M. A., Elhoseny, M., Alshehri, M. D., & Abdulkareem, K. H. (2022). Blockchain multi-objective optimization approach-enabled secure and cost-efficient scheduling for the Internet of Medical Things (IoMT) in fog-cloud system. Soft Computing, 26(13), 6429-6442. https://doi.org/10.1007/s00500-022-07167-9
Razak, G. M., Hendry, L. C., & Stevenson, M. (2023). Supply chain traceability: A review of the benefits and its relationship with supply chain resilience. Production Planning & Control, 34(11), 1114-1134. https://doi.org/10.1080/09537287.2021.1983661
Salah, D., & Idoudi, H. (2021). A Meta-heuristic-based Scheduling of Transactions for Medical Blockchain Systems. In 2021 IEEE 30th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE) (pp. 81-84). IEEE. https://doi.org/10.1109/WETICE53228.2021.00026
Javaid, M., Haleem, A., Singh, R. P., Suman, R., & Khan, S. (2022). A review of Blockchain Technology applications for financial services. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(3), 100073. https://doi.org/10.1016/j.tbench.2022.100073
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, l., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105918. https://doi.org/10.1016/j.ijsu.2021.105906
Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. arXiv preprint arXiv:1109.2058. https://doi.org/10.48550/arXiv.1109.2058
Qiu, X., Chen, W., Tang, B., Liang, J., Dai, H. N., & Zheng, Z. (2022). A distributed and privacy-aware high-throughput transaction scheduling approach for scaling blockchain. IEEE Transactions on Dependable and Secure Computing, 20(5), 4372-4386. https://doi.org/10.1109/TDSC.2022.3216571
Dong, N., Bai, G., Huang, L. C., Lim, E. K. H., & Dong, J. S. (2020). A blockchain-based decentralized booking system. The Knowledge Engineering Review, 35, e17. https://doi.org/10.1017/S0269888920000260
Pallevada, H., Kanuri, G. P. K., Posina, S., Paruchuri, S., & Chinta, M. (2021). Blockchain based Decentralized Vehicle Booking Service. In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1418-1424). IEEE. https://doi.org/10.1109/ICOSEC51865.2021.9591711
Li, W., Cao, S., Hu, K., Cao, J., & Buyya, R. (2021). Blockchain-enhanced fair task scheduling for cloud-fog-edge coordination environments: Model and algorithm. Security and Communication Networks, 2021, 5563312. https://doi.org/10.1155/2021/5563312
Babu, G. J. S., & Baskar, M. (2022). Application of blockchain methodology in secure task scheduling in cloud environment. Advances in Engineering Software, 172, 103175. https://doi.org/10.1016/j.advengsoft.2022.103175
Zhang, Y., Liang, Y., Jia, B., & Wang, P. (2022). Scheduling and process optimization for blockchain-enabled cloud manufacturing using dynamic selection evolutionary algorithm. IEEE Transactions on Industrial Informatics, 19(2), 1903-1911. https://doi.org/10.1109/TII.2022.3188835
Kakkar, R., Gupta, R., Agrawal, S., Tanwar, S., Altameem, A., Altameem, T., Sharma, R., Turcanu, F-E., & Raboaca, M. S. (2022). Blockchain and iot-driven optimized consensus mechanism for electric vehicle scheduling at charging stations. Sustainability, 14(19), 12800. https://doi.org/10.3390/su141912800
Torky, M., El-Dosuky, M., Goda, E., Snášel, V., & Hassanien, A. E. (2022). Scheduling and securing drone charging system using particle swarm optimization and blockchain technology. Drones, 6(9), 237. https://doi.org/10.3390/drones6090237
Manoj, M. K., Srivastava, G., Somayaji, S. R. K., Gadekallu, T. R., Maddikunta, P. K. R., & Bhattacharya, S. (2020). An incentive based approach for COVID-19 planning using blockchain technology. In 2020 IEEE Globecom Workshops (GC Wkshps (pp. 1-6). IEEE. https://doi.org/10.1109/GCWkshps50303.2020.9367469
Banerjee, A. (2022). An ERP and Planning System Enabled Decentralized Supply Chain Using Blockchain Technology. In Blockchain Driven Supply Chains and Enterprise Information Systems (pp. 63-96). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-96154-1_4
Griewing, S., Lingenfelder, M., Wagner, U., & Gremke, N. (2022). Use case evaluation and digital workflow of breast cancer care by artificial intelligence and blockchain technology application. Healthcare, 10(10), 2100. https://doi.org/10.3390/healthcare10102100
Wang, L., Xu, N., Ling, Y., Zhou, B., Zhang, H., Miao, W., & Yao, S. (2022). Smart energy scheduling optimization model based on energy blockchain technology. In International Conference on Intelligent Systems, Communications, and Computer Networks (ISCCN 2022) (Vol. 12332, pp. 23-30). SPIE. https://doi.org/10.1117/12.2652695
Di, Y., Huo, R., Sun, C., Zeng, S., Sha, Z., & Huang, T. (2022). Research On Optimization Of Electric Vehicle Charging Scheduling Based On Blockchain. In 2022 IEEE International Conference on Energy Internet (ICEI) (pp. 67-72). IEEE. https://doi.org/10.1109/ICEI57064.2022.00017
Geng, J., Rehman, A. A., Mou, Y., Decker, S., & Rong, C. (2022). Blockchain-based Cross-organizational Workflow Platform. In 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom) (pp. 53-59). IEEE. https://doi.org/10.1109/CloudCom55334.2022.00018
Liu, Y., Zhang, J., Zhang, L., & Liang, H. (2020). IoT-and blockchain-enabled credible scheduling in cloud manufacturing: a systemic framework. In 2020 IEEE 18th International Conference on Industrial Informatics (INDIN) (Vol. 1, pp. 488-493). IEEE. https://doi.org/10.1109/INDIN45582.2020.9442088
Gao, Y., Si, P., Jin, K., Sun, T., & Wu, W. (2023). Performance comparison of different deep reinforcement learning algorithms for task scheduling problem in blockchain-enabled internet of vehicles. IEEE Transactions on Vehicular Technology, 72(7), 9322-9336. https://doi.org/10.1109/TVT.2023.3248651
Lei, Y., & Yu, P. S. (2020). Container Scheduling in Blockchain-based Cloud Service Platform. In 2020 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom) (pp. 976-983). IEEE. https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00148
Shukla, M., Lin, J., & Seneviratne, O. (2022). Blockchain and IoT enhanced clinical workflow. In International conference on artificial intelligence in medicine (pp. 407-411). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-09342-5_40
Lakhan, A., Ahmad, M., Bilal, M., Jolfaei, A., & Mehmood, R. M. (2021). Mobility aware blockchain enabled offloading and scheduling in vehicular fog cloud computing. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4212-4223. https://doi.org/10.1109/TITS.2021.3056461
Al-Refaie, A., & Al-Hawadi, A. (2023). A proposed eFSR blockchain system for optimal planning of facility services with probabilistic arrivals and stochastic service durations. Buildings, 13(1), 240 .https://doi.org/10.3390/buildings13010240
Gu, S., Luo, X., Guo, D., Ren, B., Tang, G., Xie, J., & Sun, Y. (2020). Joint chain-based service provisioning and request scheduling for blockchain-powered edge computing. IEEE Internet of Things Journal, 8(4), 2135-2149. https://doi.org/10.1109/JIOT.2020.3026183
Gao, Y., Wu, W., Nan, H., Sun, Y., & Si, P. (2020). Deep reinforcement learning based task scheduling in mobile blockchain for IoT applications. In ICC 2020-2020 IEEE International Conference on Communications (ICC) (pp. 1-7). IEEE. https://doi.org/10.1109/ICC40277.2020.9148888
Tsang, Y. P., Wu, C. H., Leung, P. P., Ip, W. H., & Ching, W. K. (2021). Blockchain-IoT-driven nursing workforce planning for effective long-term care management in nursing homes. Journal of Healthcare Engineering, 2021, 9974059. https://doi.org/10.1155/2021/9974059
Strebinger, A., & Treiblmaier, H. (2022). Cultural roadblocks? Acceptance of blockchain-based hotel booking among individualistic and collectivistic travelers. Journal of Hospitality and Tourism Technology, 13(5), 891-906. https://doi.org/10.1108/JHTT-10-2021-0293
Strebinger, A., & Treiblmaier, H. (2022). Profiling early adopters of blockchain-based hotel booking applications: Demographic, psychographic, and service-related factors. Information Technology & Tourism, 24(1), 1-30. https://doi.org/10.1007/s40558-021-00219-0
Qin, C., Li, P., Liu, J., & Liu, J. (2021). Blockchain-enabled charging scheduling for unmanned vehicles in smart cities. Journal of Internet Technology, 22(2), 327-337. https://doi.org/10.3966/160792642021032202008
Khajeh, H., Shafie-khah, M., & Laaksonen, H. (2020). Chapter 7 - Blockchain-based demand response using prosumer scheduling. In Blockchain-Based Smart Grids. (pp. 131-144). Academic Press. https://doi.org/10.1016/B978-0-12-817862-1.00007-5
Li, L., Teng, Y., Yu, F. R., Song, M., & Wang, W. (2021). Blockchain based joint task scheduling and supply-demand configuration for smart manufacturing. In 2021 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1-6). IEEE. https://doi.org/10.1109/WCNC49053.2021.9417421
Lohmer, J. (2019). Applicability of blockchain technology in scheduling resources within distributed manufacturing. In Logistics Management: Strategies and Instruments for digitalizing and decarbonizing supply chains-Proceedings of the German Academic Association for Business Research, Halle, 2019 (pp. 89-103). Springer International Publishing. https://doi.org/10.1007/978-3-030-29821-0_7
Chen, X., Jia, X., Zhang, L., & Cai, L. (2022). A Blockchain Distributed Computing Resource Scheduling Balancing Method Based on Variance Ratio. In 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS) (pp. 1218-1222). IEEE. https://doi.org/10.1109/TOCS56154.2022.10015909
Li, D., Chen, R., Wan, Q., Guan, Z., Sun, Y., Wu, Q., Hu, J., & Liu, J. (2022). Decentralized IoT resource monitoring and scheduling framework based on blockchain. IEEE Internet of Things Journal, 10(24), 21135-21142. https://doi.org/10.1109/JIOT.2022.3228799
Dai, W. (2019). Quantum-computing with AI & blockchain: modelling, fault tolerance and capacity scheduling. Mathematical and Computer Modelling of Dynamical Systems, 25(6), 523-559. https://doi.org/10.1080/13873954.2019.1677725
Lin, K., Gao, J., Han, G., Wang, H., & Li, C. (2022). Intelligent blockchain-enabled adaptive collaborative resource scheduling in large-scale industrial internet of things. IEEE Transactions on Industrial Informatics, 18(12), 9196-9205. https://doi.org/10.1109/TII.2022.3169457
Ahmad, I., Abdullah, S., Bukhsh, M., Ahmed, A., Arshad, H., & Khan, T. F. (2022). Message scheduling in blockchain based IoT environment with additional fog broker layer. IEEE Access, 10, 97165-97182. https://doi.org/10.1109/ACCESS.2022.320559 2
Gao, L., Wu, C., Du, Z., Yoshinaga, T., Zhong, L., Liu, F., & Ji, Y. (2022). Toward efficient blockchain for the internet of vehicles with hierarchical blockchain resource scheduling. Electronics, 11(5), 832. https://doi.org/10.3390/electronics1105083 2
Chen, J., & Li, T. (2022). Internet of vehicles resource scheduling based on blockchain and game theory. Mathematical Problems in Engineering, 2022, 6891618. https://doi.org/10.1155/2022/6891618
Javed, M. U., & Javaid, N. (2019). Scheduling charging of electric vehicles in a secured manner using blockchain technology. In 2019 International Conference on Frontiers of Information Technology (FIT) (pp. 351-3515). IEEE. https://doi.org/10.1109/FIT47737.2019.00072
Hu, W., Yao, W., Hu, Y., & Li, H. (2019). Collaborative optimization of distributed scheduling based on blockchain consensus mechanism considering battery-swap stations of electric vehicles. IEEE access, 7, 137959-137967. https://doi.org/10.1109/ACCESS.2019.2941516
Jing, L., Xu, G., Fudong, Z., & Zhenzhen, P. (2021). A blockchain based aircraft tow tractor operating planning and scheduling oversight system. In 2021 4th international conference on robotics, control and automation engineering (RCAE) (pp. 362-366). IEEE. https://doi.org/10.1109/RCAE53607.2021.9638873
Deng, X., Li, J., Ma, C., Wei, K., Shi, L., Ding, M., Chen, W., & Poor, H. V. (2022). Blockchain assisted federated learning over wireless channels: Dynamic resource allocation and client scheduling. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2022.3219501
Shi, Z., Jiang, C., Jiang, L., & Liu, X. (2021). Hpks: High performance kubernetes scheduling for dynamic blockchain workloads in cloud computing. In 2021 IEEE 14th International Conference on Cloud Computing (CLOUD) (pp. 456-466). IEEE. https://doi.org/10.1109/CLOUD53861.2021.00060
Ding, C., Wang, L., Chen, X., Yang, H., Huang, L., & Song, X. (2023). A Blockchain-Based Wide-Area Agricultural Machinery Resource Scheduling System. Applied Engineering in Agriculture, 39(1), 1-12. https://doi.org/10.13031/aea.15332
Chen, Z., Xie, H., Guo, W., Zhao, R., & Liu, Y. (2022). Visual Analysis of Blockchain Energy Storage Scheduling considering the Optimal Scheduling of User-Side Source and Storage Resources. Mobile Information Systems, 2022, 8369121. https://doi.org/10.1155/2022/8369121
Cantillo-Luna, S., Moreno-Chuquen, R., Chamorro, H. R., Sood, V. K., Badsha, S., & Konstantinou, C. (2022). Blockchain for distributed energy resources management and integration. IEEE Access, 10, 68598-68617. https://doi.org/10.1109/ACCESS.2022.3184704
Liu, Y., Duan, L., Ban, X., Huang, W., Zuo, X., & Zhang, W. (2021). Blockchain technology for distributed energy scheduling method of district-level integrated energy system. Electric Power Construction, 42(12), 30-38. https://doi.org/10.12204/j.issn.1000-7229.2021.12.004
Yin, F., Hajjiah, A., Jermsittiparsert, K., Al-Sumaiti, A. S., Elsayed, S. K., Ghoneim, S. S., & Mohamed, M. A. (2021). A secured social-economic framework based on PEM-blockchain for optimal scheduling of reconfigurable interconnected microgrids. IEEE Access, 9, 40797-40810. https://doi.org/10.1109/ACCESS.2021.3065400
Huang, S., Huang, H., Gao, G., Sun, Y. E., Du, Y., & Wu, J. (2023). Edge resource pricing and scheduling for blockchain: A stackelberg game approach. IEEE Transactions on Services Computing, 16(2), 1093-1106. https://doi.org/10.1109/TSC.2022.3177438
Huang, S., Huang, H., Gao, G., Sun, Y. E., Du, Y., & Wu, J. (2021). Stackelberg game based resource pricing and scheduling in edge-assisted blockchain networks. In 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS) (pp. 289-296). IEEE. https://doi.org/10.1109/MASS52906.2021.00045
Sato, T., Shimosawa, T., & Himura, Y. (2022). Operations smart contract to realize decentralized system operations workflow for consortium blockchain. IEICE Transactions on Communications, 105(11), 1318-1331. https://doi.org/10.1587/transcom.2021TMP0008
Sato, T., Shimosawa, T., & Himura, Y. (2021). OpsSC: Decentralized blockchain network operation workflow for Hyperledger Fabric. In 2021 IEEE International Conference on Blockchain (Blockchain) (pp. 287-294). IEEE. https://doi.org/10.1109/Blockchain53845.2021.00046
Feng, L., Liu, L., & Hua, C. (2022). Joint Scheduling and Power Control for Efficient Consensus Transmission in Wireless Blockchain Systems. In ICC 2022-IEEE International Conference on Communications (pp. 1016-1021). IEEE. https://doi.org/10.1109/ICC45855.2022.9838397
Li, D., Wong, W. E., Zhao, M., & Hou, Q. (2020). Secure storage and access for task-scheduling schemes on consortium blockchain and interplanetary file system. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C) (pp. 153-159). IEEE. https://doi.org/10.1109/QRS-C51114.2020.00035
Rondanini, C., Carminati, B., Daidone, F., & Ferrari, E. (2020). Blockchain-based controlled information sharing in inter-organizational workflows. In 2020 IEEE International Conference on Services Computing (SCC) (pp. 378-385). IEEE. https://doi.org/10.1109/SCC49832.2020.00056
Yu, Y., Luo, Y., & Shi, Y. (2022). Adoption of blockchain technology in a two-stage supply chain: Spillover effect on workforce. Transportation Research Part E: Logistics and Transportation Review, 161, 102685. https://doi.org/10.1016/j.tre.2022.102685
Akshita V., Dhanush J.S., Dikshitha Varman A., & Kumar, V. K. (2021). Blockchain based COVID vaccine booking and vaccine management system. In 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1-7). IEEE. https://doi.org/10.1109/ICOSEC51865.2021.9591965
Tan, W. K. A., & Sundarakani, B. (2021). Assessing blockchain technology application for freight booking business: A case study from technology acceptance model perspective. Journal of Global Operations and Strategic Sourcing, 14(1), 202-223. https://doi.org/10.1108/JGOSS-04-2020-0018
Ruggeri, A., Fazio, M., Celesti, A., & Villari, M. (2020). Blockchain-based healthcare workflows in federated hospital clouds. In Service-Oriented and Cloud Computing: 8th IFIP WG 2.14 European Conference, ESOCC 2020, Heraklion, Crete, Greece, September 28–30, 2020, Proceedings 8 (pp. 113-121). Springer International Publishing. https://doi.org/10.1007/978-3-030-44769-4_9
Parthiban, R., & Kumar, K. S. (2022). Effective resource scheduling using hybrid gradient descent cuckoo search algorithm and security enhancement in cloud via blockchain for healthcare 4.0. Materials Today: Proceedings, 56, 1802-1808. https://doi.org/10.1016/j.matpr.2021.10.473
Li, M., & Huang, G. Q. (2019). Blockchain-enabled workflow management system for fine-grained resource sharing in E-commerce logistics. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE) (pp. 751-755). IEEE. https://doi.org/10.1109/COASE.2019.8843250
Huang, H., Huang, Z., Peng, X., Zheng, Z., & Guo, S. (2021). MVCom: Scheduling most valuable committees for the large-scale sharded blockchain. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS) (pp. 629-639). IEEE. https://doi.org/10.1109/ICDCS51616.2021.00066
Zhao, Y. (2022). Design of optimal scheduling model for emergency medical supplies by blockchain technology. Journal of Healthcare Engineering, 2022, 4608761. https://doi.org/10.1155/2022/4608761
Wang, X., Wang, W., Liu, X., Liu, Y., Zhao, L., Chen, Y., & Li, H. (2022). Optimal Scheduling Strategy of Park Microgrid based on Blockchain Technology. In 2022 Asian Conference on Frontiers of Power and Energy (ACFPE) (pp. 376-381). IEEE. https://doi.org/10.1109/ACFPE56003.2022.9952346
Ibrahim, M., Jamil, F., Lee, Y., & Kim, D. (2022). Blockchain-based secured load balanced task scheduling approach for fitness service. Computers, Materials & Continua, 71(2), 3291-3305. https://doi.org/10.32604/cmc.2022.019534
Wang, H., Yao, Y., Hou, Q., Wang, X., Zeng, L., Qiu, W., He, D., & Wang, Q. (2020). Design of Work Ticket System and Scheduling Algorithm based on Blockchain. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 858-863). IEEE. https://doi.org/10.1109/SSCI47803.2020.9308362
Afzal, M., Umer, K., Amin, W., Naeem, M., Cai, D., Zhenyuan, Z., & Huang, Q. (2019). Blockchain based domestic appliances scheduling in community microgrids. In 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) (pp. 2842-2847). IEEE. https://doi.org/10.1109/ISGT-Asia.2019.8881074
Ashaolu, S., & Chen, L. (2022). Blockchain Project Workflow Execution for Trustless Operation. In Principles and Practice of Blockchains (pp. 63-90). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-10507-4_4
Kherbouche, M., Pisoni, G., & Molnár, B. (2022). Model to program and blockchain approaches for business processes and workflows in finance. Applied System Innovation, 5(1), 10. https://doi.org/10.3390/asi5010010
Chen, W., Liang, X., Li, J., Qin, H., Mu, Y., & Wang, J. (2018). Blockchain based provenance sharing of scientific workflows. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 3814-3820). IEEE. https://doi.org/10.1109/BigData.2018.8622237
Bore, N., Kinai, A., Mutahi, J., Kaguma, D., Otieno, F., Remy, S. L., & Weldemariam, K. (2019). On using blockchain based workflows. In 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 112-116). IEEE. https://doi.org/10.1109/BLOC.2019.8751446
Balon, B., Kalinowski, K., & Paprocka, I. (2022). Application of blockchain technology in production scheduling and management of human resources competencies. Sensors, 22(8), 2844. https://doi.org/10.3390/s22082844
Liu, X. (2022). Research on decentralized operation scheduling strategy of integrated energy system based on energy blockchain. International Journal of Energy Research, 46(15), 21558-21582. https://doi.org/10.1002/er.7598
Bian, Z., & Zhang, Q. (2022). Combined compromise solution and blockchain-based structure for optimal scheduling of renewable-based microgrids: Stochastic information approach. Sustainable Cities and Society, 76, 103441. https://doi.org/10.1016/j.scs.2021.103441
Wang, P., Meng, K., & Li, S. (2019). An Efficiency Evaluation Model for Designing Optimal Scheduling Mechanisms in N+ X Hybrid Blockchain. In 2019 21st International Conference on Advanced Communication Technology (ICACT) (pp. 71-76). IEEE. https://doi.org/10.23919/ICACT.2019.8702044
Erri Pradeep, A. S., Yiu, T. W., & Amor, R. (2019). Leveraging blockchain technology in a BIM workflow: A literature review. In International Conference on Smart Infrastructure and Construction 2019 (ICSIC) Driving data-informed decision-making (pp. 371-380). ICE Publishing. https://doi.org/10.1680/icsic.64669.371
Coelho, R., Braga, R., David, J. M. N., Dantas, M., Ströele, V., & Campos, F. (2020). Blockchain for reliability in collaborative scientific workflows on cloud platforms. In 2020 IEEE Symposium on Computers and Communications (ISCC) (pp. 1-7). IEEE. https://doi.org/10.1109/ISCC50000.2020.9219729
Zhu, H., Wang, Y., Hei, X., Ji, W., & Zhang, L. (2018). A blockchain-based decentralized cloud resource scheduling architecture. In 2018 International Conference on Networking and Network Applications (NaNA) (pp. 324-329). IEEE. https://doi.org/10.1109/NANA.2018.8648712
Fridgen, G., Radszuwill, S., Urbach, N., & Utz, L. (2018). Cross-organizational workflow management using blockchain technology: towards applicability, auditability, and automation. In 51st Annual Hawaii International Conference on System Sciences (HICSS). https://hdl.handle.net/10993/44527
Hammi, A., Belhi, A., Gasmi, H., & Bouras, A. (2022). Blockchain-based lifecycle approach towards a secure building information modelling (BIM) workflow. In 2022 2nd International Conference on Computers and Automation (CompAuto) (pp. 140-147). IEEE. https://doi.org/10.1109/CompAuto55930.2022.00034
Guggenmos, F., Lockl, J., Rieger, A., Wenninger, A., & Fridgen, G. (2020). How to develop a GDPR-compliant blockchain solution for cross-organizational workflow management: evidence from the German asylum procedure. http://hdl.handle.net/10125/64234
Mercenne, L., Brousmiche, K. L., & Hamida, E. B. (2018). Blockchain studio: A role-based business workflows management system. In 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON) (pp. 1215-1220). IEEE. https://doi.org/10.1109/IEMCON.2018.8614879
Rahman, M. S., Khalil, I., & Bouras, A. (2021). A Framework for Modelling Blockchain based Supply Chain Management System to ensure soundness of Smart Contract Workflow. In HICSS (pp. 1-10). http://dx.doi.org/10.24251/HICSS.2021.675
Bai, F., Shen, T., Yu, Z., Zeng, K., & Gong, B. (2021). Trustworthy blockchain-empowered collaborative edge computing-as-a-service scheduling and data sharing in the IIoE. IEEE Internet of Things Journal, 9(16), 14752-14766. https://doi.org/10.1109/JIOT.2021.3058125
Wilczyński, A., Kołodziej, J., & Grzonka, D. (2021). Security aspects in blockchain-based scheduling in mobile multi-cloud computing. In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid) (pp. 696-703). IEEE. https://doi.org/10.1109/CCGrid51090.2021.00084
Vera-Rivera, A., Refaey, A., & Hossain, E. (2021). Task sharing and scheduling for edge computing servers using hyperledger fabric blockchain. In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE. https://doi.org/10.1109/GCWkshps52748.2021.9682057
Nguyen, T., Nguyen, T., Vu, Q. H., Huynh, T. T. B., & Nguyen, B. M. (2021). Multi-objective sparrow search optimization for task scheduling in fog-cloud-blockchain systems. In 2021 IEEE International Conference on Services Computing (SCC) (pp. 450-455). IEEE. https://doi.org/10.1109/SCC53864.2021.00065
Baniata, H., Anaqreh, A., & Kertesz, A. (2021). PF-BTS: A privacy-aware fog-enhanced blockchain-assisted task scheduling. Information Processing & Management, 58(1), 102393. https://doi.org/10.1016/j.ipm.2020.102393
Wilczyński, A., & Kołodziej, J. (2020). Modelling and simulation of security-aware task scheduling in cloud computing based on Blockchain technology. Simulation Modelling Practice and Theory, 99, 102038. https://doi.org/10.1016/j.simpat.2019.102038
Shahidinejad, A., & Abbasinezhad-Mood, D. (2022). Ultra-lightweight and secure blockchain-assisted charging scheduling scheme for vehicular edge networks by utilization of NanoPi NEO. IEEE Transactions on Vehicular Technology, 71(8), 8116-8123. https://doi.org/10.1109/TVT.2022.3173076
Sahu, B. L., & Chandrakar, P. (2022). Blockchain-Based Framework for Electric Vehicle Charging Port Scheduling. In 2022 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (pp. 1-6). IEEE. https://doi.org/10.1109/ANTS56424.2022.10094049
Liu, Q., Huan, J., & Liu, Q. (2022). Secure Charging Scheduling Strategy for Electric Vehicles Based on Blockchain. In 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall) (pp. 1-7). IEEE. https://doi.org/10.1109/VTC2022-Fall57202.2022.10012725
Okoye, M. O., & Kim, H. M. (2022). Optimized user-friendly transaction time management in the blockchain distributed energy market. Ieee Access, 10, 34731-34742. https://doi.org/10.1109/ACCESS.2022.3162214
Wu, Y., Wang, Z., Ruan, Q., Shi, J., & Fang, B. (2019). Node scheduling: a blockchain-based node selection approach on sapiens chain. In 2019 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 1-7). IEEE. https://doi.org/10.1109/BIGCOMP.2019.8679303
Miraz, M. H., & Donald, D. C. (2018). Application of blockchain in booking and registration systems of securities exchanges. In 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) (pp. 35-40). IEEE. https://doi.org/10.1109/iCCECOME.2018.8658726
Huo, J., & Pan, B. (2022). Study the path planning of intelligent robots and the application of blockchain technology. Energy Reports, 8, 5235-5245. https://doi.org/10.1016/j.egyr.2022.03.204
Li, S., Zhang, H., Yan, W., & Jiang, Z. (2021). A hybrid method of blockchain and case-based reasoning for remanufacturing process planning. Journal of Intelligent Manufacturing, 32, 1389-1399. https://doi.org/10.1007/s10845-020-01618-6
Chen, Y., Bai, X., Jin, X., Wang, Z., Wang, F., & Ling, L. (2023). Edge Computing Task Scheduling with Joint Blockchain and Task Caching in Industrial Internet. CMC-COMPUTERS MATERIALS & CONTINUA, 75(1), 2101-2117. https://doi.org/10.32604/cmc.2023.035530
Wang, D., Lan, F., Shen, H., Liu, M., & Sun, Z. (2022). Optimal scheduling of power systems considering carbon markets: Based on blockchain theory and multi-objective particle swarm optimization algorithm. Frontiers in Energy Research, 10, 953873. https://doi.org/10.3389/fenrg.2022.953873
Babaei, A., Khedmati, M., & Jokar, M. R. A. (2023). A new model for production and distribution planning based on data envelopment analysis with respect to traffic congestion, Blockchain technology and uncertain conditions. Annals of Operations Research, 1-37. https://doi.org/10.1007/s10479-023-05349-8
Tohmé, F., Rossit, D. A., Frutos, M., Vásquez, Ó., & Pérez, A. T. E. (2022). Blockchain Production Planning in Mass Personalized Environments. In Big Data and Blockchain for Service Operations Management (pp. 271-291). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-87304-2_11
Al-Refaie, A., Al-Hawadi, A., Lepkova, N., & Abbasi, G. (2023). Blockchain of optimal multiple construction projects planning under probabilistic arrival and stochastic durations. Journal of Civil Engineering and Management, 29(1), 15-34. https://doi.org/10.3846/jcem.2023.17927
Tedjo, C., Berawi, M. A., & Sari, M. (2021). Development of Blockchain and Machine Learning System in the Process of Construction Planning Method of the Smart Building to Save Cost and Time. In International Conference on Rehabilitation and Maintenance in Civil Engineering (pp. 833-842). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9348-9_74
Curavić, M., Mavretić, Z., Duilo, I., Budin, L., & Delimar, M. (2022). Blockchain Application in Digital Platform FieldWork 4 RES used for Planning and Realization of Renewable Energy Sources Projects. In 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO) (pp. 65-70). IEEE. https://doi.org/10.23919/MIPRO55190.2022.9803339
Mohammed, A., Almousa, A., Ghaithan, A., & Hadidi, L. A. (2021). The role of blockchain in improving the processes and workflows in construction projects. Applied Sciences, 11(19), 8835. https://doi.org/10.3390/app11198835
Zhang, L., Guo, W., Yang, W., Su, D., & Li, S. (2022). A reverse personnel assignment method with duration re-inferring for smart “IOT+ blockchain” project. Procedia Computer Science, 207, 3167-3180. https://doi.org/10.1016/j.procs.2022.09.374
Yadav, A. M., & Sharma, S. C. (2023). Cooperative task scheduling secured with blockchain in sustainable mobile edge computing. Sustainable Computing: Informatics and Systems, 37, 100843. https://doi.org/10.1016/j.suscom.2022.100843
Li, W., Wang, L., & Wang, D. (2021). Power Energy Supply and Demand Scheduling Method Based on Blockchain Technology. In Journal of Physics: Conference Series (Vol. 1994, No. 1, p. 012001). IOP Publishing. https://doi.org/10.1088/1742-6596/1994/1/012001
Tao, M., Wang, Z., & Qu, S. (2021). Research on multi-microgrids scheduling strategy considering dynamic electricity price based on blockchain. IEEE Access, 9, 52825-52838. https://doi.org/10.1109/ACCESS.2021.3070436
Anh, T. T., Luong, N. C., Xiong, Z., Niyato, D., & Kim, D. I. (2020). Joint time scheduling and transaction fee selection in blockchain-based RF-powered backscatter cognitive radio network. arXiv preprint arXiv:2001.03336. https://doi.org/10.48550/arXiv.2001.03336
Yufeng, Y., Wenjun, W., Junyu, D., Yang, G., Yang, S., & Yanhua, Z. (2020). Policy Gradient Method based Energy Efficience Task Scheduling in Mobile Edge Blockchain. In 2020 IEEE 6th International Conference on Computer and Communications (ICCC) (pp. 2224-2229). IEEE. https://doi.org/10.1109/ICCC51575.2020.9344967
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.