A Machine Learning-Based Decision Analytic Model for Optimal Route Selection in Autonomous Urban Delivery: The ULTIMO Project
DOI:
https://doi.org/10.31181/dmame7220241114Keywords:
Autonomous vehicles, Decision Support System, Multi-Criteria Decision-Making, ARWEN, WLD, Random Forest classifierAbstract
In this research, we introduce a Decision Support System (DSS) that incorporates two multi-criteria decision-making (MCDM) techniques: the Alternatives Ranking with Elected Nominee (ARWEN) and the Win-Loss-Draw (WLD) methods. This system benefits from both methods’ advantages to address the challenge of selecting optimal routes for autonomous urban deliveries. The primary objective of this study is to establish a comprehensive framework to assist decision-makers in selection of the optimized strategy. This paper presents not only the implementation codes but also validates the results and conducts a sensitivity analysis. Furthermore, the DSS is applied to a numerical example to demonstrate its practical utility in real-world scenarios.
Downloads
References
Faisal, A., Kamruzzaman, M., Yigitcanlar, T., & Currie, G. (2019). Understanding autonomous vehicles. Journal of transport and land use, 12(1), 45-72. https://doi.org/10.5198/jtlu.2019.1405
Konstantas, D., & Fournier, G. (2022). Fully Automated Public Transportation Mobility: A Dream or A Nightmare? https://doi.org/10.20944/preprints202209.0408.v1
Crayton, T. J., & Meier, B. M. (2017). Autonomous vehicles: Developing a public health research agenda to frame the future of transportation policy. Journal of Transport & Health, 6, 245-252. https://doi.org/10.1016/j.jth.2017.04.004
Shladover, S. E. (2018). Connected and automated vehicle systems: Introduction and overview. Journal of Intelligent Transportation Systems, 22(3), 190-200. https://doi.org/10.1080/15472450.2017.1336053
Othman, K. (2022). Exploring the implications of autonomous vehicles: A comprehensive review. Innovative Infrastructure Solutions, 7(2), 165. https://doi.org/10.1007/s41062-022-00763-6
Mallozzi, P., Pelliccione, P., Knauss, A., Berger, C., & Mohammadiha, N. (2019). Autonomous vehicles: state of the art, future trends, and challenges. Automotive systems and software engineering: State of the art and future trends, 347-367. https://doi.org/10.1007/978-3-030-12157-0_16
Hakak, S., Gadekallu, T. R., Maddikunta, P. K. R., Ramu, S. P., Parimala, M., De Alwis, C., & Liyanage, M. (2023). Autonomous Vehicles in 5G and beyond: A Survey. Vehicular Communications, 39, 100551. https://doi.org/10.1016/j.vehcom.2022.100551
Rana, M. M., & Hossain, K. (2023). Connected and autonomous vehicles and infrastructures: A literature review. International Journal of Pavement Research and Technology, 16(2), 264-284. https://doi.org/10.1007/s42947-021-00130-1
Bathla, G., Bhadane, K., Singh, R. K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur, R. N., & Basheer, S. (2022). Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. Mobile Information Systems, 2022(1), 7632892. https://doi.org/10.1155/2022/7632892
Jing, P., Hu, H., Zhan, F., Chen, Y., & Shi, Y. (2020). Agent-based simulation of autonomous vehicles: A systematic literature review. IEEE Access, 8, 79089-79103. https://doi.org/10.1109/ACCESS.2020.2990295
Narayanan, S., Chaniotakis, E., & Antoniou, C. (2020). Shared autonomous vehicle services: A comprehensive review. Transportation Research Part C: Emerging Technologies, 111, 255-293. https://doi.org/10.1016/j.trc.2019.12.008
Sohrabi, S., Khreis, H., & Lord, D. (2020). Impacts of autonomous vehicles on public health: A conceptual model and policy recommendations. Sustainable Cities and Society, 63, 102457. https://doi.org/10.1016/j.scs.2020.102457
Kopelias, P., Demiridi, E., Vogiatzis, K., Skabardonis, A., & Zafiropoulou, V. (2020). Connected & autonomous vehicles–Environmental impacts–A review. Science of the total environment, 712, 135237. https://doi.org/10.1016/j.scitotenv.2019.135237
Spence, J. C., Kim, Y. B., Lamboglia, C. G., Lindeman, C., Mangan, A. J., McCurdy, A. P., Stearns, J.A., Wohlers, B., Sivak, A., & Clark, M. I. (2020). Potential impact of autonomous vehicles on movement behavior: a scoping review. American journal of preventive medicine, 58(6), e191-e199. https://doi.org/10.1016/j.amepre.2020.01.010
Gandia, R. M., Antonialli, F., Cavazza, B. H., Neto, A. M., Lima, D. A. D., Sugano, J. Y., Nicolai, I., & Zambalde, A. L. (2019). Autonomous vehicles: scientometric and bibliometric review. Transport reviews, 39(1), 9-28. https://doi.org/10.1080/01441647.2018.1518937
Caballero, W. N., Rios Insua, D., & Banks, D. (2023). Decision support issues in automated driving systems. International Transactions in Operational Research, 30(3), 1216-1244. https://doi.org/10.1111/itor.12936
Gokasar, I., Pamucar, D., Deveci, M., & Ding, W. (2023). A novel rough numbers based extended MACBETH method for the prioritization of the connected autonomous vehicles in real-time traffic management. Expert Systems with Applications, 211, 118445. https://doi.org/10.1016/j.eswa.2022.118445
Bonab, S. R., Ghoushchi, S. J., Deveci, M., & Haseli, G. (2023). Logistic autonomous vehicles assessment using decision support model under spherical fuzzy set integrated Choquet Integral approach. Expert Systems with Applications, 214, 119205. https://doi.org/10.1016/j.eswa.2022.119205
Schwarting, W., Alonso-Mora, J., & Rus, D. (2018). Planning and decision-making for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems, 1, 187-210. https://doi.org/10.1146/annurev-control-060117-105157
Li, J., Dai, J., Issakhov, A., Almojil, S. F., & Souri, A. (2021). Towards decision support systems for energy management in the smart industry and Internet of Things. Computers & Industrial Engineering, 161, 107671. https://doi.org/10.1016/j.cie.2021.107671
Abdel-Basset, M., Gamal, A., Moustafa, N., Abdel-Monem, A., & El-Saber, N. (2021). A security-by-design decision-making model for risk management in autonomous vehicles. IEEE Access, 9, 107657-107679. https://doi.org/10.1109/ACCESS.2021.3098675
Gamal, A., Abdel-Basset, M., Hezam, I. M., Sallam, K. M., & Hameed, I. A. (2023). An Interactive Multi-Criteria Decision-Making Approach for Autonomous Vehicles and Distributed Resources Based on Logistic Systems: Challenges for a Sustainable Future. Sustainability, 15(17), 12844. https://doi.org/10.3390/su151712844
Biswas, A., Gazi, K. H., Sankar, P. M., & Ghosh, A. (2024). A Decision-Making Framework for Sustainable Highway Restaurant Site Selection: AHP-TOPSIS Approach based on the Fuzzy Numbers. Spectrum of Operational Research, 2(1), 1-26. https://doi.org/10.31181/sor2120256
Bouraima, M. B., Jovčić, S., Dobrodolac, M., Pamucar, D., Badi, I., & Maraka, N. D. (2024). Sustainable Healthcare System Devolution Strategy Selection Using the AROMAN MCDM Approach. Spectrum of Decision Making and Applications, 1(1), 46-63. https://doi.org/10.31181/sdmap1120243
Hussain, A., & Ullah, K. (2024). An Intelligent Decision Support System for Spherical Fuzzy Sugeno-Weber Aggregation Operators and Real-Life Applications. Spectrum of Mechanical Engineering and Operational Research, 1(1), 177-188. https://doi.org/10.31181/smeor11202415
Ma, Y., Wang, Z., Yang, H., & Yang, L. (2020). Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica, 7(2), 315-329. https://doi.org/10.1109/JAS.2020.1003021
Filippou, S., Achilleos, A., Zukhraf, S. Z., Laoudias, C., Malialis, K., Michael, M. K., & Ellinas, G. (2023). A machine learning approach for detecting gps location spoofing attacks in autonomous vehicles. In 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring) (pp. 1-7). IEEE. https://doi.org/10.1109/VTC2023-Spring57618.2023.10200857
Caesar, H., Kabzan, J., Tan, K. S., Fong, W. K., Wolff, E., Lang, A., Fletcher, L., Beijbom, O., & Omari, S. (2021). nuplan: A closed-loop ml-based planning benchmark for autonomous vehicles. arXiv preprint arXiv:2106.11810. https://doi.org/10.48550/arXiv.2106.11810
Qayyum, A., Usama, M., Qadir, J., & Al-Fuqaha, A. (2020). Securing connected & autonomous vehicles: Challenges posed by adversarial machine learning and the way forward. IEEE Communications Surveys & Tutorials, 22(2), 998-1026. https://doi.org/10.1109/COMST.2020.2975048
Fu, Y., Yu, F. R., Li, C., Luan, T. H., & Zhang, Y. (2020). Vehicular blockchain-based collective learning for connected and autonomous vehicles. Ieee wireless communications, 27(2), 197-203. https://doi.org/10.1109/MNET.001.1900310
Zakeri, S., Chatterjee, P., Konstantas, D., & Farr, A. S. (2023). Introducing alternatives ranking with elected nominee (ARWEN) method: a case study of supplier selection. Technological and Economic Development of Economy, 29(3), 1080-1126. https://doi.org/10.3846/tede.2023.18789
Zakeri, S., Chatterjee, P., Cheikhrouhou, N., & Konstantas, D. (2022). Ranking based on optimal points and win-loss-draw multi-criteria decision-making with application to supplier evaluation problem. Expert Systems with Applications, 191, 116258. https://doi.org/10.1016/j.eswa.2021.116258
Tu, Y. J., Shang, S. S., & Wu, J. (2023). Decision support or decision making? The critical decision roles of IS in autonomous vehicles. International Journal of Services Technology and Management, 28(3-4), 205-222. https://doi.org/10.1504/IJSTM.2023.131714
Deveci, M., Mishra, A. R., Gokasar, I., Rani, P., Pamucar, D., & Özcan, E. (2022). A decision support system for assessing and prioritizing sustainable urban transportation in metaverse. IEEE Transactions on Fuzzy Systems, 31(2), 475-484. https://doi.org/10.1109/TFUZZ.2022.3190613
Puchongkawarin, C., & Ransikarbum, K. (2021). An integrative decision support system for improving tourism logistics and public transportation in Thailand. Tourism Planning & Development, 18(6), 614-629. https://doi.org/10.1080/21568316.2020.1837229
Amudha, G. (2021). ACDS—Assisted Cooperative Decision-Support for reliable interaction based navigation assistance for autonomous vehicles. Microprocessors and Microsystems, 87, 104241. https://doi.org/10.1016/j.micpro.2021.104241
Jaoua, A., Ammar, M. B., & Awasthi, A. (2019). A decision support system for on-demand goods delivery using shared autonomous electric vehicles. International Journal of Decision Support System Technology (IJDSST), 11(2), 72-88. https://doi.org/10.4018/IJDSST.2019040105
Akram, M., Zahid, K., & Kahraman, C. (2024). A new ELECTRE-based decision-making framework with spherical fuzzy information for the implementation of autonomous vehicles project in Istanbul. Knowledge-Based Systems, 283, 111207. https://doi.org/10.1016/j.knosys.2023.111207
Altay, B. C., Boztas, A. E., Okumuş, A., Gul, M., & Çelik, E. (2023). How Will Autonomous Vehicles Decide in Case of an Accident? An Interval Type-2 Fuzzy Best–Worst Method for Weighting the Criteria from Moral Values Point of View. Sustainability, 15(11), 8916. https://doi.org/10.3390/su15118916
Erdoğan, M., Kaya, İ., Karaşan, A., & Çolak, M. (2021). Evaluation of autonomous vehicle driving systems for risk assessment based on three-dimensional uncertain linguistic variables. Applied Soft Computing, 113, 107934. https://doi.org/10.1016/j.asoc.2021.107934
Zhang, M. Y., Yang, S. C., Feng, X. J., Chen, Y. Y., Lu, J. Y., & Cao, Y. G. (2022). Route Planning for Autonomous Driving Based on Traffic Information via Multi-Objective Optimization. Applied Sciences, 12(22), 11817. https://doi.org/10.3390/app122211817
Feng, S., Sun, H., Yan, X., Zhu, H., Zou, Z., Shen, S., & Liu, H. X. (2023). Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953), 620-627. https://doi.org/10.1038/s41586-023-05732-2
Hyland, M., & Mahmassani, H. S. (2018). Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests. Transportation Research Part C: Emerging Technologies, 92, 278-297. https://doi.org/10.1016/j.trc.2018.05.003
Xie, X. F., & Wang, Z. J. (2018). SIV-DSS: Smart In-Vehicle Decision Support System for driving at signalized intersections with V2I communication. Transportation Research Part C: Emerging Technologies, 90, 181-197. https://doi.org/10.1016/j.trc.2018.03.008
Bechtsis, D., Tsolakis, N., Vlachos, D., & Srai, J. S. (2018). Intelligent Autonomous Vehicles in digital supply chains: A framework for integrating innovations towards sustainable value networks. Journal of cleaner production, 181, 60-71. https://doi.org/10.1016/j.jclepro.2018.01.173
Davidson, R. (2020). The algorithmic governance of connected autonomous vehicles: Data-driven decision support systems and smart sustainable urban mobility behaviors. Contemporary Readings in Law and Social Justice, 12(2), 16-24. https://www.ceeol.com/search/article-detail?id=910387
Sadaf, M., Iqbal, Z., Javed, A. R., Saba, I., Krichen, M., Majeed, S., & Raza, A. (2023). Connected and automated vehicles: Infrastructure, applications, security, critical challenges, and future aspects. Technologies, 11(5), 117. https://doi.org/10.3390/technologies11050117
Bari, D., Bergot, T., & Tardif, R. (2023). Fog Decision Support Systems: A Review of the Current Perspectives. Atmosphere, 14(8), 1314. https://doi.org/10.3390/atmos14081314
Gokasar, I., Simic, V., Deveci, M., & Senapati, T. (2023). Alternative prioritization of freeway incident management using autonomous vehicles in mixed traffic using a type-2 neutrosophic number based decision support system. Engineering Applications of Artificial Intelligence, 123, 106183. https://doi.org/10.1016/j.engappai.2023.106183
Deveci, M., Pamucar, D., & Gokasar, I. (2021). Fuzzy Power Heronian function based CoCoSo method for the advantage prioritization of autonomous vehicles in real-time traffic management. Sustainable Cities and Society, 69, 102846. https://doi.org/10.1016/j.scs.2021.102846
Zavadskas, E. K., Stević, Ž., Turskis, Z., & Tomašević, M. (2019). A novel extended EDAS in Minkowski Space (EDAS-M) method for evaluating autonomous vehicles. Studies in Informatics and Control, 28(3), 255-264. https://doi.org/10.24846/v28i3y201902
Johnson, A. (2020). The smart automation of urban governance: sustainable mobilities and data-driven decision support systems. Contemp. Readings L. & Soc. Just., 12, 51. https://www.ceeol.com/search/article-detail?id=884442
Wen, T., Mihăiţă, A. S., Nguyen, H., Cai, C., & Chen, F. (2018). Integrated incident decision-support using traffic simulation and data-driven models. Transportation research record, 2672(42), 247-256. https://doi.org/10.1177/0361198118782270
Kawecka, E., Perec, A., & Radomska-Zalas, A. (2024). Use of the Simple Multicriteria Decision-Making (MCDM) Method for Optimization of the High-Alloy Steel Cutting Processby the Abrasive Water Jet. Spectrum of Mechanical Engineering and Operational Research, 1(1), 111-120. https://doi.org/10.31181/smeor11202411
Sarfraz, M. (2024). Application of Interval-valued T-spherical Fuzzy Dombi Hamy Mean Operators in the antiviral mask selection against COVID-19. Journal of Decision Analytics and Intelligent Computing, 4(1), 67–98. https://doi.org/10.31181/jdaic10030042024s
Imran, R., Ullah, K., Ali, Z., & Akram, M. (2024). A multi-criteria group decision-making approach for robot selection using interval-valued intuitionistic fuzzy information and aczel-alsina bonferroni means. Spectrum of Decision Making and Applications, 1(1), 1-32. https://doi.org/10.31181/sdmap1120241
Asif, M., Ishtiaq, U., & Argyros, I. K. (2024). Hamacher Aggregation Operators for Pythagorean Fuzzy Set and its Application in Multi-Attribute Decision-Making Problem. Spectrum of Operational Research, 2(1), 27-40. https://doi.org/10.31181/sor2120258
Phulara, S., Kumar, A., Narang, M., & Bisht, K. (2024). A novel hybrid grey-BCM approach in multi-criteria decision making: An application in OTT platform. Journal of Decision Analytics and Intelligent Computing, 4(1), 1–15. https://doi.org/10.31181/jdaic10016012024p
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.