Multi-Criterion Support for the Decision Problem Solving in the Food Packaging Process

Authors

DOI:

https://doi.org/10.31181/dmame8120251353

Keywords:

Food packaging process; fuzzy evaluation; decision making; optimization criteria, Pare-to optimum

Abstract

The paper highlights the problem of the two-stage procedure for optimizing food packaging where the first stage involves selecting the optimal packaging structure and the second stage allows for the optimal selection of parameters of the packaging machine taking into account two criteria: the efficiency of the packaging process and the oxygen content in the packaging. The use of the modified Baas and Kwakernaak method in an industrial experiment allowed for the determination of the optimal packaging configuration assuming there are two types of criteria: deterministic ones focusing on the unit cost of packaging and tightness of the packaging and fuzzy ones focusing on appearance, smell and taste of the packaged product. The optimal packaging variant is variant a7 with the highest weighted average rating value equal to 0,7113. As part of parametric optimization, based on the obtained experimental results, the analyzed optimization criteria are presented in the form of regression equations and then these equations are subjected to statistical analysis. The form of the substitute criterion is formulated for the resulting single-criterion optimization problem. To deter-mine the set of Pareto optimal variants, the weight method is used, changing weight values every 0.05. Finally, the best variant is selected due to two opposing criteria using the distance function method implementing the Euclidean metric. The decision variables of the optimal variant also constitute the optimal parameters of the packaging machine due to the adopted optimization criteria. The optimal variant of the packaging process is variant 9 for which the value of the distance function di[f(x)] reaches the lowest value, i.e. 0.5533

Downloads

Download data is not yet available.

References

[1] Jiang, M., Lin, X., Zhou, X., & Qiao, H. (2022). Research on Supply Chain Quality Decision Model Considering Reference Effect and Competition under Different Decision-Making Modes. Sustainability, 14(16), 10338. https://doi.org/10.3390/su141610338

[2] Wang, J., Hu, Y., & Wu, Y. (2022). Optimal decision-making considering inter-supply-chain competition and negative-spillover from environmental effort. Regional Sustainability, 3(4), 319-334. https://doi.org/10.1016/j.regsus.2022.11.003

[3] Czerwiński, K., Rydzkowski, T., Wróblewska-Krepsztul, J., & Thakur, V. K. (2021). Towards impact of modified atmosphere packaging (MAP) on shelf-life of polymer-film-packed food products: Challenges and sustainable developments. Coatings, 11(12), 1504. https://doi.org/10.3390/coatings11121504

[4] Postrożny, J. (2022). Ocena i wybór optymalnego wariantu opakowania produktów spożywczych. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, 997(3), 141-158. https://doi.org/10.15678/ZNUEK.2022.0997.0308

[5] Verma, V., Bisht, P., & Joshi, S. (2022). Sustainable supply chain systems of food and beverages SMEs: analyzing sustainable performance using structured equation modeling. Journal of Decision Analytics and Intelligent Computing, 2(1), 53-68. https://doi.org/10.31181/jdaic10016062022v

[6] Arsyad, A. A., Widayat, I. W., & Köppen, M. (2022). Supporting farming smart documentation system by modular blockchain solutions. Decision Making: Applications in Management and Engineering, 5(1), 1-26. https://doi.org/10.31181/dmame0326022022a

[7] Ali, S., Rezende, V. T., Ullah, S., de Paiva, E. L., Tonin, F. G., Corassin, C. H., & de Oliveira, C. A. F. (2023). Food processing and challenges in the food production and quality: The foodomics approach. Food Bioscience, 103217. https://doi.org/10.1016/j.fbio.2023.103217

[8] Liu, Z., Zhang, M., Hao, Y., Hu, W., Zhu, W., Wang, H., & Li, L. (2024). Application of surface‐modified functional packaging in food storage: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 23(3), e13343. https://doi.org/10.1111/1541-4337.13343

[9] Du, H., Sun, X., Chong, X., Yang, M., Zhu, Z., & Wen, Y. (2023). A review on smart active packaging systems for food preservation: Applications and future trends. Trends in Food Science & Technology, 104200. https://doi.org/10.1016/j.tifs.2023.104200

[10] Galli, B. D., Trossolo, E., Carafa, I., Squara, S., Caratti, A., Filannino, P., Cordero, C., Gobbetti, M., & Di Cagno, R. (2024). Effectiveness of modified atmosphere and vacuum packaging in preserving the volatilome of Stelvio PDO cheese over time. Food Chemistry, 444, 138544. https://doi.org/10.1016/j.foodchem.2024.138544

[11] Frydrych, J., Zdanowski, B., Mroczkowski, D., & Sulik, T. (2018). Wpływ grubości oraz głębokości termoformowania folii dolnej zawierającej warstwę barierową na przenikalność tlenu przez opakowanie. Opakowanie(04). http://dx.doi.org/10.15199/42.2018.4.2

[12] Kaczmarczyk, M., Kaszuba, A., & Frydrych, J. (2019). Dobór optymalnego opakowania do żywności. Projekt HumidWRAP. Przemysł Spożywczy, 73(01). https://doi.org/10.15199/65.2019.1.7

[13] Domagala, J., Goldyn, N., & Borkowski, M. (2021). Postawy konsumentów wobec opakowań aktywnych i inteligentnych w przemyśle spożywczym. Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie. Ekonomika i Organizacja Logistyki(6 [2]). http://dx.doi.org/10.22630/EIOL.2021.6.2.9

[14] Yu, Q., Zhang, M., Mujumdar, A. S., & Li, J. (2024). AI-based additive manufacturing for future food: Potential applications, challenges and possible solutions. Innovative Food Science & Emerging Technologies, 103599. https://doi.org/10.1016/j.ifset.2024.103599

[15] Jadhav, H. B., & Choudhary, P. (2024). Emerging techniques for the processing of food to ensure higher food safety with enhanced food quality: a review. Discover Food, 4(1), 20. https://doi.org/10.1007/s44187-024-00089-5

[16] Mohammadi, A., & Custódio, A. L. (2024). A trust-region approach for computing Pareto fronts in multiobjective optimization. Computational Optimization and Applications, 87(1), 149-179. https://doi.org/10.1007/s10589-023-00510-2

[17] Sarkar, B., & Biswas, A. (2022). A multi‐criteria decision making approach for strategy formulation using Pythagorean fuzzy logic. Expert Systems, 39(1), e12802. https://doi.org/10.1111/exsy.12802

[18] Diao, H., Deng, A., Cui, H., Liu, X., & Zou, L. (2022). An approach for solving fuzzy multi-criteria decision problem under linguistic information. Fuzzy Optimization and Decision Making, 1-25. https://doi.org/10.1007/s10700-021-09356-x

[19] Wang, C.-N., Nguyen, N.-A.-T., Dang, T.-T., & Lu, C.-M. (2021). A compromised decision-making approach to third-party logistics selection in sustainable supply chain using fuzzy AHP and fuzzy VIKOR methods. Mathematics, 9(8), 886. https://doi.org/10.3390/math9080886

[20] Bellavia, S., Gurioli, G., Morini, B., & Toint, P. L. (2023). The impact of noise on evaluation complexity: the deterministic trust-region case. Journal of Optimization Theory and Applications, 196(2), 700-729. https://doi.org/10.1007/s10957-022-02153-5

[21] Bucur, F. I., Borda, D., Neagu, C., Grigore-Gurgu, L., & Nicolau, A. I. (2023). Deterministic approach and Monte Carlo simulation to predict listeria monocytogenes time to grow on refrigerated ham: A Study supporting risk-based decisions for consumers’ health. Journal of Food Protection, 86(1), 100026. https://doi.org/10.1016/j.jfp.2022.100026

[22] Deptuła, A. M., & Knosala, R. (2015). Risk assessment of the innovative projects implementation. Management and Production Engineering Review, 2080-8208, 6. http://dx.doi.org/10.1515/mper-2015-0032

[23] Wang, K., Zhou, Y., Tian, G., & Goh, M. (2021). A structured solution framework for fuzzy minimum spanning tree problem and its variants under different criteria. Fuzzy Optimization and Decision Making, 1-32. https://doi.org/10.1007/s10700-021-09352-1

[24] Juanpera, M., Domenech, B., Ferrer-Martí, L., García-Villoria, A., & Pastor, R. (2022). Methodology for integrated multicriteria decision-making with uncertainty: Extending the compromise ranking method for uncertain evaluation of alternatives. Fuzzy Sets and Systems, 434, 135-158. https://doi.org/10.1016/j.fss.2021.08.008

[25] De Marchi, A., Dreves, A., Gerdts, M., Gottschalk, S., & Rogovs, S. (2023). A Function Approximation Approach for Parametric Optimization. Journal of Optimization Theory and Applications, 196(1), 56-77. https://doi.org/10.1007/s10957-022-02138-4

[26] Shi, R., & You, C. (2023). Dynamic pricing and production control for perishable products under uncertain environment. Fuzzy Optimization and Decision Making, 22(3), 359-386. https://doi.org/10.1007/s10700-022-09396-x

[27] Kaya, C. Y., & Maurer, H. (2023). Optimization over the Pareto front of nonconvex multi-objective optimal control problems. Computational Optimization and Applications, 86(3), 1247-1274. https://doi.org/10.1007/s10589-023-00535-7

[28] Płonka, S., Ogiński, L., & Postrożny, J. (2021). Optymalizacja operacji wytwórczych. Wydawnictwo Naukowe PWN, Warszawa. https://doi.org/10.53271/2021.009

[29] Panta, A. P., Ghimire, R. P., Panthi, D., & Pant, S. R. (2021). Optimization of M/M/s/N queueing model with reneging in a fuzzy environment. American Journal of Operations Research, 11(03), 121. http://doi.org/10.4236/ajor.2021.113008

[30] Ahmed, F., & Kilic, K. (2019). Fuzzy Analytic Hierarchy Process: A performance analysis of various algorithms. Fuzzy Sets and Systems, 362, 110-128. https://doi.org/10.1016/j.fss.2018.08.009

[31] Wang, Y. (2021). Fine-grained access control model based on sensitivity calculation by fuzzy mathematics. Journal of Physics: Conference Series, 012024. http://doi.org/10.1088/1742-6596/1856/1/012024

[32] Osyczka, A. (2002). Evolutionary algorithms for single and multicriteria design optimization. Physica-Verlag. 3790814180. https://doi.org/10.1007/s00158-002-0218-y

[33] Płonka, S., Postrożny, J., & Drobina, R. (2021). Methodology of Optimum Selection of Material and Semi-Folded Products for Rotors of Open-End Spinning Machine. Autex Research Journal, 21(4), 393-402. https://doi.org/10.2478/aut-2020-0040

[34] Jokić, Ž., Božanić, D., & Pamučar, D. (2021). Selection of fire position of mortar units using LBWA and Fuzzy MABAC model. Operational Research in Engineering Sciences: Theory and Applications, 4(1), 115-135. https://doi.org/10.31181/oresta20401156j

Downloads

Published

2025-02-17

How to Cite

Jacek Postrozny, Robert Bucki, & Petr Suchánek. (2025). Multi-Criterion Support for the Decision Problem Solving in the Food Packaging Process. Decision Making: Applications in Management and Engineering, 8(1), 306–332. https://doi.org/10.31181/dmame8120251353