Asset allocation with multi-criteria decision making techniques
DOI:
https://doi.org/10.31181/dmame0305102022oKeywords:
Asset allocation, portfolio optimization, multi-criteria decision making, criteria weightsAbstract
Determining the weights of assets in a portfolio is one of the fundamental problems of finance. MCDM techniques are employed for asset allocation purposes. However, criterion weights have to be determined before the steps of the techniques are implemented. In this study, the weights of the criteria are determined by four different MCDM weight techniques (CILOS, CRITIC, MEREC, and SECA), and the effect of these weights on the performance of portfolios created with 17 MCDM techniques (ARAS, CoCoSo, CODAS, COPRAS, EDAS, GRA, MABAC, MAIRCA, MARCOS, MOORA, MOOSRA, OCRA, SAW, TODIM, TOPSIS, VIKOR, WASPAS) is examined. 297 criteria (including sectional and cumulative) were calculated using the mean, standard deviation, and correlation, based on historical returns. The returns of the S&P 500 stocks between January 2020 and December 2021 are used as the dataset. Returns for the first 250 trading days are used to determine the weights of the criteria and the stocks in the portfolio. Returns from the following 250 trading days are used for performance evaluation purposes. The experiment was repeated for two more periods. It is found that cumulative criteria have significantly higher weights than sectional criteria. Differences in returns by industry were also examined. The results show that when the MCDM techniques are used to set criterion weights, a higher return is possible.
Downloads
References
Alali, F., & Tolga, A. C. (2019). Portfolio allocation with the TODIM method. Expert Systems with Applications, 124, 341–348. https://doi.org/10.1016/j.eswa.2019.01.054
Albadvi, A., Chaharsooghi, S. K., & Esfahanipour, A. (2006). Decision making in stock trading: An application of PROMETHEE. European Journal of Operational Research, 177(2), 673–683. https://doi.org/10.1016/j.ejor.2005.11.022
Aouni, B., Doumpos, M., Pérez-Gladish, B., & Steuer, R. E. (2018). On the increasing importance of multiple criteria decision aid methods for portfolio selection. Journal of the Operational Research Society, 69(10), 1525–1542. https://doi.org/10.1080/01605682.2018.1475118
Bana E Costa, C. A., & Soares, J. O. (2004). A multicriteria model for portfolio management. European Journal of Finance, 10(3), 198–211. https://doi.org/10.1080/1351847032000113254
Biswas, S., Bandyopadhyay, G., Guha, B., & Bhattacharjee, M. (2019). An ensemble approach for portfolio selection in a multi-criteria decision making framework. Decision Making: Applications in Management and Engineering, 2(2), 138–158. https://doi.org/10.31181/dmame2003079b
Bouri, A., Martel, J. M., & Chabchoub, H. (2002). A multi-criterion approach for selecting attractive portfolio. Journal of Multi-Criteria Decision Analysis, 11(4–5), 269–277. https://doi.org/10.1002/mcda.334
Brans, J. P., & Vincke, P. (1985). A preference ranking organisation method. Management Science, 31(6), 647–656. https://doi.org/10.1287/MNSC.31.6.647
Brauers, W. K. M., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445–469.
Churchman, C. W., & Ackoff, R. L. (1954). An approximate measure of value. Journal of the Operations Research Society of America, 2(2), 172-187. https://doi.org/10.1287/opre.2.2.172
Das, M. C., Sarkar, B., & Ray, S. (2012). Decision making under conflicting environment: A new MCDM method. International Journal of Applied Decision Sciences, 5(2), 142–162. https://doi.org/10.1504/IJADS.2012.046505
Diakoulaki, D., Mavrotas, G., & Papayannakis, L. (1995). Determining objective Weights in multiple criteria problems: The CRITIC method. In Computers & Operations Research, 22(7), 763-770.
Dominiak, C. (1997). Portfolio selection using the idea of reference solution. In: Fandel, G., Gal, T. (Eds), Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems, vol 448, p.593-602. Berlin: Springer. https://doi.org/10.1007/978-3-642-59132-7_64
Ehrgott, M., Klamroth, K., & Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155(3), 752–770. https://doi.org/10.1016/S0377-2217(02)00881-0
Emamat, M. S. M. M., Mota, C. M. de M., Mehregan, M. R., Sadeghi Moghadam, M. R., & Nemery, P. (2022). Using ELECTRE-TRI and FlowSort methods in a stock portfolio selection context. Financial Innovation, 8(11), 1-35. https://doi.org/10.1186/s40854-021-00318-1
Fazli, S., & Jafari, H. (2012). Developing a hybrid multi-criteria model for investment in stock exchange. Management Science Letters, 2(2), 457–468. https://doi.org/10.5267/j.msl.2012.01.011
Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451. https://doi.org/10.15388/Informatica.2015.57
Gomes, L. F. A. M., & Lima, M. M. P. P. (1991). TODIM basic and application to multicriteria ranking of projects with environmental impacts. Foundations of Computing and Decision Sciences, 16(3–4).
Hurson, C., & Ricci-Xella, N. (2002). Structuring portfolio selection criteria for interactive decision support. European Research Studies, 5(1-2), 69-93.
Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: methods and applications, a state of the art survey. Lecture Notes in Economics and Mathematical Systems, 186, Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-48318-9
Jahan, A., Edwards, K. L., & Bahraminasab, M. (2016). Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, Boston: Butterworth-Heinemann, 63–80. https://doi.org/10.1016/B978-0-08-100536-1.00004-7
Jerry Ho, W. R., Tsai, C. L., Tzeng, G. H., & Fang, S. K. (2011). Combined DEMATEL technique with a novel MCDM model for exploring portfolio selection based on CAPM. Expert Systems with Applications, 38(1), 16–25. https://doi.org/10.1016/j.eswa.2010.05.058
Ju-Long, D. (1982). Control problems of grey systems. Systems and Control Letters, 1(5), 288–294. https://doi.org/10.1016/S0167-6911(82)80025-X
Karunathilake, H., Bakhtavar, E., Chhipi-Shrestha, G., Mian, H. R., Hewage, K., & Sadiq, R. (2020). Decision making for risk management: A multi-criteria perspective. 4, 239–287. https://doi.org/10.1016/BS.MCPS.2020.02.004
Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation and Economic Cybernetics Studies and Research, 50(3), 25–44.
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous evaluation of criteria and alternatives (SECA) for multi-criteria decision-making. Informatica, 29(2), 265–280. https://doi.org/10.15388/Informatica.2018.167
Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry, 13(4), 525. https://doi.org/10.3390/sym13040525
Kraujaliene, L. (2019). Comparative analysis of multicriteria decision-making method evaluating the efficiency of technology transfer. Business, Management and Education, 17(0), 72–93. https://doi.org/10.3846/bme.2019.11014
Li, B., & Teo, K. L. (2021). Portfolio optimization in real financial markets with both uncertainty and randomness. Applied Mathematical Modelling, 100, 125–137. https://doi.org/10.1016/j.apm.2021.08.006
Lim, S., Oh, K. W., & Zhu, J. (2014). Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market. European Journal of Operational Research, 236(1), 361–368. https://doi.org/10.1016/j.ejor.2013.12.002
Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91. https://doi.org/10.2307/2329297
Nguyen, T. T., & Gordon-Brown, L. N. (2012). Fuzzy numbers and MCDM methods for portfolio optimization. World Academy of Science, Engineering and Technology, 72(12), 368–380.
Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. PhD Thesis, Faculty of Civil Engineering, Belgrade, 302p.
Pamučar, D., Vasin, L., & Lukovac, L. (2014). Selection of railway level crossings for investing in security equipment using hybrid DEMATEL-MARICA model. XVI International Scientific-Expert Conference on Railway, Railcon, 89-92 November.
Pamučar, D., & Ćirović, G. (2015). The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Systems with Applications, 42(6), 3016–3028. https://doi.org/10.1016/j.eswa.2014.11.057
Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry, 10(9), 393. https://doi.org/10.3390/sym10090393
Parkan, C. (1994). Operational competitiveness ratings of production units. Managerial and Decision Economics, 15(3), 201–221. https://doi.org/10.1002/mde.4090150303
Poklepović, T., & Babić, Z. (2014). Stock selection using a hybrid MCDM approach. Croatian Operational Research Review, 5(2), 273–290. https://doi.org/10.17535/crorr.2014.0013
Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
Sarkar, B. (2011). Fuzzy decision making and its applications in cotton fibre grading. In: A. Majumdar (Ed) Soft Computing in Textile Engineering, Oxford: Woodhead Publishing. 353–383. https://doi.org/10.1533/9780857090812.5.353
Stević, Ž., Pamučar, D., Puška, A., & Chatterjee, P. (2020). Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to Compromise solution (MARCOS). Computers and Industrial Engineering, 140, p. 106231 https://doi.org/10.1016/j.cie.2019.106231
Tamiz, M., Hasham, R., & Jones, D. F. (1997). A Comparison Between Goal Programming and Regression Analysis for Portfolio Selection. In: Fandel, G., Gal, T. (Eds) Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems, vol. 448, Berlin: Springer. https://doi.org/10.1007/978-3-642-59132-7_46
Unvan, Y. A. (2019). Performance evaluation of ISE30 (Istanbul Stock Exchange) stock certificates and formation of portfolio by using multi-criteria decision making techniques. Communications in Statistics Case Studies Data Analysis and Applications, 5(3), 214–229. https://doi.org/10.1080/23737484.2019.1588806
Vezmelai, A.S., Lashgari, Z., & Keyghobadi, A. (2015). Portfolio selection using ELECTRE III: Evidence from Tehran Stock Exchange. Decision Science Letters, 4(2), 227–236. https://doi.org/10.5267/j.dsl.2014.11.003
Xidonas, P., Mavrotas, G., & Psarras, J. (2010). A multiple criteria decision-making approach for the selection of stocks. Journal of the Operational Research Society, 61(8), 1273–1287. https://doi.org/10.1057/jors.2009.74
Yazdani, M., Zarate, P., Kazimieras Zavadskas, E., & Turskis, Z. (2019). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501-2519. https://doi.org/10.1108/MD-05-2017-0458
Zavadskas, E. K., Kaklauskas, A., & Sarka, V. (1994). The New Method of Multicriteria Complex Proportional Assessment of Projects. Technological and Economic Development of Economy, 1(3), 131–139.
Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2010). Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method. Archives of Civil and Mechanical Engineering, 10(3), 123-141. https://doi.org/10.1016/s1644-9665(12)60141-1
Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika, 122(6), 3–6. https://doi.org/10.5755/j01.eee.122.6.1810
Zavadskas, E. K., & Podvezko, V. (2016). Integrated determination of objective criteria weights in MCDM. International Journal of Information Technology and Decision Making, 15(2), 267–283. https://doi.org/10.1142/S0219622016500036
Zopounidis, C., Despotis, D. K., & Kamaratou, I. (1998). Portfolio Selection Using the ADELAIS Multiobjective Linear Programming System. Computational Economics, 11, 189-204.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.