Interval- valued fermatean neutrosophic graphs

Authors

  • Said Broumi Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco
  • Raman Sundareswaran Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, India
  • Marayanagaraj Shanmugapriya Department of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, India
  • Giorgio Nordo Dipartimento di scienze Matematiche e Informatiche, scienze Fisiche e scienze della Terra dell'Università degli Studi di Messina, Italy
  • Mohamed Talea Laboratory of Information Processing, Faculty of Science Ben M’Sik, University of Hassan II, Casablanca, Morocco
  • Assia Bakali Ecole Royale Navale-Boulevard Sour Jdid, Casablanca, Morocco
  • Florentin Smarandache Department of Mathematics, University of New Mexico, USA

DOI:

https://doi.org/10.31181/dmame0311072022b

Keywords:

Interval-valued Fermatean Fuzzy sets, Interval-valued Fermatean Neutrosophic sets, Interval-valued Fermatean Neutrosophic graphs

Abstract

In this work, we define Interval-valued Fermatean neutrosophic graphs and present some operations on Interval-valued Fermatean neutrosophic graphs. Further, we introduce the concepts of Regular interval-valued Fermatean neutrosophic graphs, Strong interval-valued Fermatean neutrosophic graphs, Cartesian, Composition, Lexicographic product of interval-valued Fermatean neutrosophic graphs. Finally, we give the applications of Interval-valued Fermatean neutrosophic graphs.

Downloads

Download data is not yet available.

References

Ajay, D., & Chellamani, P. (2020). Pythagorean Neutrosophic Fuzzy Graphs. International Journal of Neutrosophic Science, 11 (2), 108-114.

Ajay, D., & Chellamani, P. (2021a). Pythagorean Neutrosophic Dombi Fuzzy Graphs with an Application to MCDM. Neutrosophic Sets and Systems, 47, 411-431.

Ajay, D., Chellamani, P., Rajchakit, G., Boonsatit, N., & Hammachukiattikul, P. (2022). Regularity of Pythagorean neutrosophic graphs with an illustration in MCDM. AIMS Mathematics, 7 (5), 9424–9442.

Ajay, D., Karthiga, S., & Chellamani, P. (2021). A study on labelling of pythagorean neutrosophic fuzzy graphs. Journal of Computational Mathematica, 5 (1), 105–116.

Akalyadevia, K., Antony Crispin Sweety, C., & Sudamani Ramaswamy, A. R. (2022). Spherical neutrosophic graph coloring. AIP Conference Proceedings, 2393, 020217.

Akram, M., Alshehri, N. O., & Dudek, W. A. (2013). Certain types of interval-valued fuzzy graphs. Journal of Applied Mathematics, 857070

Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and System, 20, 87–96.

Atanassov, K., & Gargov, G. (1998). Elements of intuitionistic fuzzy logic. Part I. Fuzzy sets and systems, 95(1), 39-52.

Aydın, S., & Kutlu Gündoğdu, F. (2021). Interval-valued spherical fuzzy MULTIMOORA method and its application to industry 4.0. Decision Making with Spherical Fuzzy Sets: Theory and Applications, 295-322.

Broumi, S., Bakali, A., Talea, M., & Smarandache, F. (2016a). Isolated single valued neutrosophic graphs. Neutrosophic Sets Systems, 11, 74–78.

Broumi, S., Mohamed Tale., Assia Bakali., & Smarandache, F. (2016d). Interval Valued Neutrosophic Graphs. Critical Review, 12, 5-33.

Broumi, S., Smarandache, F., Talea, M., & Bakali, A. (2016b). An introduction to bipolar single valued neutrosophic graph theory. Applied Mechanics and Materials, 841, 184–191.

Broumi, S., Sundareswaran, R., Shanmugapriya, M., Bakali, A. & Talea, M. (2022). Theory and Applications of Fermatean Neutrosophic Graphs. Neutrosophic Sets and Systems, 50, 248-286.

Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Single valued neutrosophic graphs. Journal of New theory, 10, 86-101.

Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016c). On bipolar single valued neutrosophic graphs. New Trends in Neutrosophic Theory and Applications, 11, 203-221.

Duleba, S., Kutlu Gündoğdu, F., & Moslem, S. (2021). Interval-Valued Spherical Fuzzy Analytic Hierarchy Process Method to Evaluate Public Transportation Development. Informatica, 32(4), 661-686.

Duran, V., Topal, S., & Smarandache, F. (2021). An application of neutrosophic logic in the confirmatory data analysis of the satisfaction with life scale. Journal of Fuzzy Extension and Applications, 2(3), 262-282.

Ejegwa, P., & Zuakwagh, D. (2022). Fermatean fuzzy modified composite relation and its application in pattern recognition. Journal of Fuzzy Extension and Applications, 3(2), 140-151.

Ganie, A. H. (2022). Multicriteria decision-making based on distance measures and knowledge measures of Fermatean fuzzy sets. Granular Computing, 7(4), 979-998.

Ismayil, A. M., & Ali, A. M. (2014). On strong interval-valued intuitionistic fuzzy graph. International Journal of Fuzzy Mathematics and Systems, 4(2), 161-168.

Jeevaraj, S. (2021). Ordering of interval-valued Fermatean fuzzy sets and its applications. Expert Systems with Applications, 185, 115613.

Jun, Y. B., Smarandache, F., & Kim, C. S. (2017). Neutrosophic cubic sets. New mathematics and natural computation, 13(1), 41-54.

Kutlu Gündoğdu, F., & Kahraman, C. (2019). A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. Engineering Applications of Artificial Intelligence, 85, 307–323.

Kutlu Gündoğdu, F., & Kahraman, C. (2021). Hospital performance assessment using interval-valued spherical fuzzy analytic hierarchy process. Decision Making with Spherical Fuzzy Sets: Theory and Applications, 349-373.

Lakhwani, T. S., Mohanta, K., Dey, A., Mondal, S. P., & Pal, A. (2022). Some operations on Dombi neutrosophic graph. Journal of Ambient Intelligence and Humanized Computing, 13, 425–443.

Lathamaheswari, M., Nagarajan, D., Garg, H., & Kavikumar, J. (2021). Interval valued spherical fuzzy aggregation operators and their application in decision making problem. Decision Making with Spherical Fuzzy Sets: Theory and Applications, 27-51.

Li, J., Alburaikan, A. & de Fátima Muniz, R. (2022), Evaluation of safety-based performance in construction projects with neutrosophic data envelopment analysis, Management Decision. https://doi.org/10.1108/MD-02-2022-0237

Liu, D., Liu, Y., & Wang, L. (2019). Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods. International Journal of Intelligent Systems, 34(11), 2807-2834.

Mishra, S. N. & Pal, A. (2013). Product of interval-valued intuitionistic fuzzy graph. Annals of Pure and Applied Mathematics, 5(1), 37–46.

Mohamed S. Y., & Ali A. M. (2018). Interval-valued Pythagorean fuzzy graph. Journal of Computer and Mathematical Sciences, 9(10), 1497-1511.

Mohamed, S. Y., & Ali, A. M. (2018a). On Strong Interval-valued Pythagorean fuzzy graph. Journal of Applied Science and Computations, 5(10), 669-713.

Mohanta, K., Dey, A., & Pal, A. (2020). A study on picture dombi fuzzy graph. Decision Making: Applications in Management and Engineering, 3(2), 119-130.

Nagarajan, D., Lathamaheswari, M., Broumi, S., & Kavikumar, J. (2019). Dombi interval valued neutrosophic graph and its role in traffic control management. Neutrosophic Sets and Systems, 24, 114-133.

Peng, X. (2019). New operations for interval-valued Pythagorean fuzzy set. Scientia iranica, 26(2), 1049-1076.

Peng, X., & Yang, Y. (2016). Fundamental properties of interval‐valued Pythagorean fuzzy aggregation operators. International journal of intelligent systems, 31(5), 444-487.

Rashmanlou, H., & Jun, Y. B. (2013). Complete interval-valued fuzzy graphs. Annals of Fuzzy Mathematics and Informatics, 6(3), 677-687.

Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing, 11, 663-674.

Smarandache, F. (2017). Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications. Infinite Study.

Smarandache, F. (2019). Neutrosophic set is a generalization of intuitionistic fuzzy set, inconsistent intuitionistic fuzzy set (picture fuzzy set, ternary fuzzy set), pythagorean fuzzy set, spherical fuzzy set, and q-rung orthopair fuzzy set, while neutrosophication is a generalization of regret theory, grey system theory, and three-ways decision (revisited). Journal of New Theory, (29), 1-31.

Smarandache, F. (2020). Generalizations and alternatives of classical algebraic structures to neutroAlgebraic structures and antiAlgebraic structures. Journal of Fuzzy Extension and Applications, 1(2), 81-83.

Smarandache, F. (2022). Plithogeny, Plithogenic Set, Logic, Probability and Statistics: A Short Review. Journal of Computational and Cognitive Engineering 1(2), 47–50

Sriganesh, R., Sundareswaran, R., Shanmugapriya, M., & Pandikumar, M. (2021). A Study of power plant selection process – A graph theoretic approach. Journal of Physics.: Conference Series, 1921, 012081.

Stephen, S., & Helen, M. (2021). Interval-valued Neutrosophic Pythagorean Sets and their Application Decision Making using IVNP-TOPSIS. International Journal of Innovative Research in Science. Engineering and Technology, 10 (1), 14571- 14578.

Sundareswaran, R., Sangeetha, P., Shanmugapriya, M., Sheriff, M. T., Benasir, M., Thrisha, A. S., & Sathyaprakash, R. (2022). Assessment of structural cracks in buildings using single-valued neutrosophic DEMATEL model. Materials Today: Proceedings, 65, 1078-1085. https://doi.org/10.1016/j.matpr.2022.04.156

Veezhinathan, M., Raman, S., Lakshminarayanan, N., Seshadri, V., & Balakrishnan, H. (2022). Comparative study of dental implant materials using digraph techniques. In AIP Conference Proceedings (Vol. 2516, No. 1). AIP Publishing.

Wang, C., Hu, Z. & Bao, Z. (2022), Evaluation of the government entrepreneurship support by a new dynamic neutrosophic operator based on time degrees. Management Decision, 2022-0305.

Xu, P., Guan, H., Talebi, A. A., Ghassemi, M., & Rashmanlou, H. (2022). Certain concepts of interval-valued intuitionistic fuzzy graphs with an application. Advances in Mathematical Physics, 6350959

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338 - 353.

Zhang, K., Xie, Y., Noorkhah, S.A., Imeni, M. and Das, S.K. (2022), Neutrosophic management evaluation of insurance companies by a hybrid TODIM-BSC method: a case study in private insurance companies, Management Decision. https://doi.org/10.1108/MD-01-2022-0120

Published

2022-07-12

How to Cite

Broumi, S., Sundareswaran, R. ., Shanmugapriya, M. ., Nordo, G. ., Talea, M. ., Bakali, A., & Smarandache, F. . (2022). Interval- valued fermatean neutrosophic graphs. Decision Making: Applications in Management and Engineering, 5(2), 176–200. https://doi.org/10.31181/dmame0311072022b