Solving an integral equation via intuitionistic fuzzy bipolar metric spaces
DOI:
https://doi.org/10.31181/dmame622023624Keywords:
Intuitionistic Fuzzy Bipolar Metric Space, Fixed Point ResultsAbstract
In this paper, we introduce the notion of intuitionistic fuzzy bipolar metric space and prove fixed point theorems. Our results are an extension or generalization of results proved in the literature. The derived results are substantiated with suitable examples and an application.
Downloads
References
Gaba, Y. U., Aphane, M., & Aydi, H. (2021). backslashleft(α,BKbackslashright)-Contractions in Bipolar Metric Spaces. Journal of Mathematics, 2021, 1–6.
Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385–389.
Gürdal, U., Mutlu, A., & Özkan, K. (2020). Fixed point results for αψ-contractive mappings in bipolar metric spaces. Journal of Inequalities & Special Functions, 11(1).
Kausar, N. (2019). Characterizations of non associative ordered semigroups by the properties of their fuzzy ideals with thresholds α, β. Прикладная Дискретная Математика, 43, 37–59.
Kausar, N., & Waqar, M. A. (2019). Characterizations of non-associative rings by their intuitionistic fuzzy bi-ideals. European Journal of Pure and Applied Mathematics, 12(1), 226–250.
Kishore, G. N. V., Agarwal, R. P., Srinuvasa Rao, B., & Srinivasa Rao, R. V. N. (2018). Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications. Fixed Point Theory and Applications, 2018(1), 1–13.
Kishore, G. N. V., Prasad, D. R., Rao, B. S., & Baghavan, V. S. (2019). Some applications via common coupled fixed point theorems in bipolar metric spaces. Journal of Critical Reviews, 7, 601–607.
Kishore, G. N. V., Rao, K. P. R., IsIk, H., Srinuvasa Rao, B., & Sombabu, A. (2021). Covarian mappings and coupled fiexd point results in bipolar metric spaces. International Journal of Nonlinear Analysis and Applications, 12(1), 1–15.
Kishore, G. N. V., Rao, K. P. R., Sombabu, A., & Rao, R. (2019). Related results to hybrid pair of mappings and applications in bipolar metric spaces. Journal of Mathematics, 2019, 1-25. https://doi.org/10.1155/2019/8485412
Konwar, N. (2020). Extension of fixed point results in intuitionistic fuzzy b metric space. Journal of Intelligent & Fuzzy Systems, 39(5), 7831–7841.
Kramosil, I., & Michálek, J. (1975). Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), 336–344.
Mutlu, A., & Gürdal, U. (2016). Bipolar metric spaces and some fixed point theorems. Journal of Nonlinear Sciences and Applications, 9(9), 5362–5373.
Mutlu, A., Özkan, K., & Gürdal, U. (2020). Locally and weakly contractive principle in bipolar metric spaces. TWMS Journal of Applied and Engineering Mathematics, 10(2), 379–388.
Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22(5), 1039–1046.
Rao, B. S., Kishore, G. N. V., & Kumar, G. K. (2018). Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy. International Journal of Mathematics Trends and Technology (IJMTT), 63, 25–34.
Rehman, S. U., Jabeen, S., Khan, S. U., & Jaradat, M. M. (2021). Some α-ϕ-Fuzzy Cone Contraction Results with Integral Type Application. Journal of Mathematics, 2021, 1–15.
Roy, K., & Saha, M. (2020). Generalized contractions and fixed point theorems over bipolar cone tvs b-metric spaces with an application to homotopy theory. Matematicki Vesnik, 72(4), 281-294.
Roy, K., & Saha, M. (2021). Sequential bipolar metric space and well-posedness of fixed point problems. International Journal of Nonlinear Analysis and Applications, 12(2), 387–398.
Roy, K., Saha, M., George, R., Guran, L., & Mitrović, Z. D. (2022). Some covariant and contravariant fixed point theorems over bipolar p-metric spaces and applications. Filomat, 36(5), 1755–1767.
Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of. Mathematics, 10(1), 313–334.
Shah, T., Kausar, N., & Rehman, I. (2012a). Intuitionistic fuzzy normal subrings over a non-associative ring. Analele Ştiinţifice Ale Universităţii" Ovidius" Constanţa. Seria Matematică, 20(1), 369–386.
Shah, T., Kausar, N., & Rehman, I. (2012b). Intuitionistic fuzzy normal subrings over a non-associative ring. Analele Ştiinţifice Ale Universităţii" Ovidius" Constanţa. Seria Matematică, 20(1), 369–386.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.