Game problem of assigning staff to project implementation

Authors

DOI:

https://doi.org/10.31181/dmame622023713

Keywords:

Random graph colouring, stochastic game, project implementation, Markov recurrent method, adaptation, self-learning

Abstract

This article describes how to solve the game problem of assigning staff to work on projects based on the ontological approach. The stochastic game algorithm for colouring an undirected random graph has been used to plan project implementation. The stochastic game mathematical model has been described, and the self-learning Markov method has been used for its solution. It is highlighted that the goal of the players is to minimize the functions of average losses. The Markov recurrent method that provides the adaptive choice of colours for the vertices of the random graph based on dynamic vectors of mixed strategies, the values of which depend on the current losses of players has been used. A computer experiment was carried out, which confirmed the convergence of the stochastic game for the problem of colouring the random graph. In conclusion. the possibility of defining the procedure for appointing staff to implement projects has been justified.

Downloads

Download data is not yet available.

References

Asdre, K., Ioannidou, K., & Nikolopoulos, S. D. (2007). The harmonious coloring problem is NP-complete for interval and permutation graphs. Discrete Applied Mathematics, 155(17), 2377-2382. https://doi.org/10.1016/j.dam.2007.07.005.

Belova, T. G., & Pobizhenko, I. O. (2017). Method for Assessing the Degree of Structural Similarity Connected Undirected Graphs. Information Processing Systems, 1(147), 9-12. https://doi.org/10.30748/soi.2017.147.02.

Benveniste, A., Métivier, M., & Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximations. Stochastic Modelling and Applied Probability, 22. (1st ed.). Heidelberg: Springer Berlin. https://doi.org/10.1007/978-3-642-75894-2.

Blum, Y., & Rosenschein, J. S. (2008). Multiagent graph coloring: Pareto efficiency, fairness and individual rationality. Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 1, 24-29. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=0e01a90cfe4e502e2b07cef9c1481d0afe021d13 Accessed 12 March 2023.

Bowman, A., Wyman, J. F., & Peters, J. (2002). The operations manual: A mechanism for improving the research process. Nursing Research, 51(2), 134–138. https://doi.org/10.1097/00006199-200203000-00011.

Burov, Y., Vysotska, V., & Kravets, P. (2019). Ontological approach to plot analysis and modeling. CEUR Workshop Proceedings, 2362, 22–31. https://ceur-ws.org/Vol-2362/paper3.pdf Accessed 12 March 2023.

Charteris, J., Berman, J., & Page, A. (2021). Virtual team professional learning and development for practitioners in education. Professional Development in Education, 47(4), 638-650. https://doi.org/10.1080/19415257.2021.1879215.

Chartrand, G., & Zhang, P. (2008). Chromatic graph theory. (1st ed.). New York: Chapman and Hall/CRC. https://doi.org/10.1201/9781584888017.

Chen, B.-S. (2019). Stochastic Game Strategies and Their Applications. (1st ed.). New York: CRC Press. https://doi.org/10.1201/9780429432941.

Chen, J. V., & Wang, Y.-H. (2011). Virtual Community and Online Game Players. In Information Resources Management Association (Ed.), Virtual Communities: Concepts, Methodologies, Tools and Applications (pp. 1511–1519). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-60960-100-3.ch427.

Chung, K. L. (1954). On a Stochastic Approximation Method. The Annals of Mathematical Statistics, 25(3), 463–483. https://doi.org/10.1214/aoms/1177728716.

De Lima, A. M., & Carmo, R. (2018). Exact Algorithms for the Graph Coloring Problem. Revista de Informática Teórica e Aplicada, 25(4), 57–73. https://doi.org/10.22456/2175-2745.80721.

Denysenko, O. (2019). Overview of Graph Coloring Methods and Algorithms. ΛΌГOΣ. The art of scientific mind, 7, 27-32. https://doi.org/10.36074/2617-7064.07.00.006.

Dey, A., Agarwal, A., Dixit, P., Long, H. V., Werner, F., Pal, T., & Son, L. H. (2019). A genetic algorithm for total graph coloring. Journal of Intelligent and Fuzzy Systems, 37(6), 7831-7838. https://doi.org/10.3233/JIFS-182816.

Dowsland, K. A., & Thompson, J. M. (2008). An improved ant colony optimisation heuristic for graph colouring. Discrete Applied Mathematics, 156(3), 313–324. https://doi.org/10.1016/j.dam.2007.03.025.

Flesch, J., Thuijsman, F., & Vrieze, O. J. (2003). Stochastic games with non-observable actions. Mathematical Methods of Operations Research, 58(3), 459–475. https://doi.org/10.1007/s001860300293.

Frieze, A., & Karoński, M. (2015). Introduction to Random Graphs. (1st ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/cbo9781316339831.

Fudenberg, D., & Tirole, J. (1991). Game theory. (1st ed.). Cambridge, Massachusetts: The MIT Press.

Fudenberg, D., & Tirole, J. (1991a). Game theory. London: The MIT Press. https://dokumen.tips/documents/mit-press-game-theory-fudenberg-tirole-579p.html?page=1 Accessed 12 March 2023.

Gozhyj, A., Kalinina, I., Gozhyj, V., & Vysotska, V. (2019). Web service interaction modeling with colored petri nets. Proceedings of the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 18-21 September, 2019, Metz, France, 1, 319–323. https://doi.org/10.1109/IDAACS.2019.8924400.

Gupta, S., & Singh, D. P. (2020). Greedy graph coloring algorithm based on depth first search. International Journal on Emerging Technologies, 11(2), 854–862.

Hardy, B., Lewis, R., & Thompson, J. (2018). Tackling the edge dynamic graph colouring problem with and without future adjacency information. Journal of Heuristics, 24(3), 321–343. https://doi.org/10.1007/s10732-017-9327-z.

Hartley, R., & Thuijsman, F. (1994). Optimality and Equilibria in Stochastic Games. The Journal of the Operational Research Society, 45(1), 116–117. https://doi.org/10.2307/2583957.

Heagney, J. (2012). Fundamentals of project management, fourth edition. (4th ed.). New York: Amacon, American Management Association. https://www.nesacenter.org/uploaded/conferences/SEC/2014/handouts/Rick_Detwiler/15_Detwiler_Resources.pdf Accessed 12 March 2023.

Huang, M., & Ma, Y. (2016). Mean field stochastic games: Monotone costs and threshold policies. Proceedings of the IEEE 55th Conference on Decision and Control, CDC, ARIA Resort & Casino, December 12-14, 2016, Las Vegas, USA, 7105–7110. https://doi.org/10.1109/CDC.2016.7799364.

Saoub, K.R. (2021). Graph Theory : an introduction to proofs, algorithms, and applications. Textbooks in Mathematics. (1st ed.). Boca Raton, Florida: CRC Press, Taylor & Francis Group, LLC.

Kay, E., & Christofides, N. (1976). Graph Theory: An Algorithmic Approach. Operational Research Quarterly (1970-1977), 27(4), 1027–1028. https://doi.org/10.2307/3009122.

Keet, C. M. (2018). An Introduction to Ontology Engineering. Version 01. https://open.uct.ac.za/bitstream/handle/11427/28312/OEbook.pdf?sequence=1&isAllowed=y Accessed 12 March 2023.

Kiefer, J., & Wolfowitz, J. (1952). Stochastic Estimation of the Maximum of a Regression Function. Annals of Mathematical Statistics, 23, 462–466. https://doi.org/10.1214/aoms/1177729392.

Kravets, P., Burov, Y., Lytvyn, V., & Vysotska, V. (2019). Gaming method of ontology clusterization. Webology, 16(1), 55–76. http://www.webology.org/2019/v16n1/a179.pdf Accessed 12 March 2023.

Kravets, P., Lytvyn, V., Vysotska, V., & Burov, Y. (2020). Promoting training of multi-agent systems. CEUR Workshop Proceedings, 2608, 364–378. https://ceur-ws.org/Vol-2608/paper28.pdf Accessed 12 March 2023.

Kravets, P., Lytvyn, V., Vysotska, V., Burov, Y., & Andrusyak, I. (2021). Game task of ontological project coverage. CEUR Workshop Proceedings, 2851, 344–355. https://ceur-ws.org/Vol-2851/paper32.pdf Accessed 12 March 2023.

Kushner, H. J., & Yin, G. (1987). Asymptotic Properties of Distributed and Communicating Stochastic Approximation Algorithms. SIAM Journal on Control and Optimization, 25(5), 1266–1290. https://doi.org/10.1137/0325070.

Kushner, H. J., & Yin, G. (1987a). Stochastic approximation algorithms for parallel and distributed processing. Stochastics, 22(3–4), 219–250. https://doi.org/10.1080/17442508708833475.

Kushner, H. J., & Yin, G. G. (1999). Review of stochastic approximation algorithms and applications. Proceedings of the IEEE, 87(4), 688–690. https://doi.org/10.1109/JPROC.1999.752525.

Kushner, H. J., & Yin, G. G. (2023). Stochastic Approximation and Recursive Algorithms and Applications. Stochastic Modelling and Applied Probability, 35. New York: Springer-Verlag. https://doi.org/10.1007/b97441.

Lawrence, R. J. (2022). Success Factors for Global Virtual Team Leaders: A Qualitative Study of Leaders of Global Virtual Teams in a Global Professional Services Firm Employing Grounded Theory. University of Southern California : ProQuest Dissertations Publishing. https://www.proquest.com/openview/5d133f8ba0f39eae08990d3c8fa673b7/1?pq-origsite=gscholar&cbl=18750&diss=y Accessed 12 March 2023.

Lim, J., & Lee, D. (2020). A load balancing algorithm for mobile devices in edge cloud computing environments. Electronics, 9(4), 686. https://doi.org/10.3390/electronics9040686.

Liu, W. (2020). Production scheduling and equipment matching of flexible workshops based on multi-objective and multi-process hybrid optimization algorithm. Academic Journal of Manufacturing Engineering, 18(4), 158–163. https://ajme.ro/PDF_AJME_2020_4/L21.pdf Accessed 12 March 2023.

Li, Z., Zhu, E., Shao, Z., & Xu, J. (2018). NP-completeness of local colorings of graphs. Information Processing Letters, 130, 25–29. https://doi.org/10.1016/j.ipl.2017.09.013.

Makris, S. (2021). Dynamic Safety Zones in Human Robot Collaboration. Cooperating Robots for Flexible Manufacturing, Springer Series in Advanced Manufacturing. Springer, Cham, 271–287. https://doi.org/10.1007/978-3-030-51591-1_14.

Makris, S. (2021a). Introduction to Cooperating Robots and Flexible Manufacturing. Cooperating Robots for Flexible Manufacturing, Springer Series in Advanced Manufacturing. Springer, Cham, 3–32. https://doi.org/10.1007/978-3-030-51591-1_1.

Maynard, M. T., Mathieu, J. E., Gilson, L. L., R. Sanchez, D., & Dean, M. D. (2019). Do I Really Know You and Does It Matter? Unpacking the Relationship Between Familiarity and Information Elaboration in Global Virtual Teams. Group and Organization Management, 44(1), 3–37. https://doi.org/10.1177/1059601118785842.

Medeni, T. D., Elwell, M., Cook, S. A., & de Souza, E. G. M. (2011). Learning Reflection and Creativity in Online Game Communities. In Information Resources Management Association (Ed.), Virtual Communities: Concepts, Methodologies, Tools and Applications (pp. 1760–1772). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-60960-100-3.ch512.

Meraihi, Y., Ramdane-Cherif, A., Mahseur, M., & Achelia, D. (2019). A Chaotic Binary Salp Swarm Algorithm for Solving the Graph Coloring Problem. In Chikhi, S., Amine, A., Chaoui, A., & Saidouni, D.E. (Eds.) Modelling and Implementation of Complex Systems. MISC 2018. Lecture Notes in Networks and Systems, vol. 64 (pp. 106–118). 0 Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-05481-6_8.

Monasson, R. (2004). On the Analysis of Backtrack Proceduresfor the Colouring of Random Graphs. In Ben-Naim, E., Frauenfelder, H., & Toroczkai, Z. (Eds.) Complex Networks. Lecture Notes in Physics, vol. 650 (pp. 235–254). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-44485-5_11.

Nash, J. F. (1950). Equilibrium points in n-person games. Mathematics, 36(1), 48–49. https://doi.org/10.1073/pnas.36.1.48.

Nazin, A. V., & Poznyak, A. S. (1986). Adaptive Control of Finite Markov Chains Employing Stochastic Approximation Method. IFAC Proceedings Volumes, 19(5), 365–369. https://doi.org/10.1016/s1474-6670(17)59825-0.

Nazin, A. V., & Poznyak, A. S. (1987). Adaptive Control of Finite Markov Chains Employing Stochastic Approximation Method. IFAC Symposia Series, 2, 365-369. https://doi.org/10.1016/b978-0-08-033452-3.50071-5.

Neogy, S. K., Bapat, R. B., & Dubey, D. (2018). Mathematical Programming and Game Theory. (1st ed.). New Delhi, India: Indian Statistical Institute, Springer Nature Singapore Pte Ltd. https://link.springer.com/content/pdf/10.1007/978-981-13-3059-9.pdf Accessed 12 March 2023.

Neogy, S. K., Bapat, R. B., Dubey, D., & Parthasarathy, T. (2020). Special Issue on-Operations Research and Game Theory: Modeling and Computation. International Game Theory Review, 22(2). New-York: World Scientific Publishing Co Pte Ltd. https://doi.org/10.1142/S0219198920020016.

Neyman, A., & Sorin, S. (2003). Stochastic Games and Applications. Nato Science Series C:, 570. New York: Springer Science, Business Media. https://doi.org/10.1007/978-94-010-0189-2.

Osborne, M. J. (2000). An Introduction to Game Theory. (1st ed.). Oxford: Oxford University Press.

Osborne, M. J. (2000a). An Introduction to Game Theory by Please send comments to Department of Economics This version : Notes. https://www.academia.edu/40093924/An_Introduction_to_Game_Theory_by_Please_send_comments_to Accessed 12 March 2023.

Osborne, M. J. (2000b). Selected chapters from draft of: An introduction to game theory. https://mathematicalolympiads.files.wordpress.com/2012/08/martin_j-_osborne-an_introduction_to_game_theory-oxford_university_press_usa2003.pdf Accessed 12 March 2023.

Osborne, M. J. (2004). An Introduction to Game Theory. (2nd ed.). New Delhi: India.

Osborne, M. J. (2010). An Introduction to Game Theory. (International Edition). Oxford: Oxford University Press.

Osborne, M., & Rubinstein, A. (1994). Solution Manual for A Course in Game Theory. Ariel. https://docplayer.net/51517226-Solution-manual-for-a-course-in-game-theory-by-martin-j-osborne-and-ariel-rubinstein-with-the-assistance-of-wulong-gu.html Accessed 12 March 2023.

Panagopoulou, P. N., & Spirakis, P. G. (2008). A game theoretic approach for efficient graph coloring. In Hong, SH., Nagamochi, H., Fukunaga, T. (Eds.), Algorithms and Computation. Lecture Notes in Computer Science, vol 5369 (pp. 183–195). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-92182-0_19.

Panik, M. J. (2017). Linear programming and resource allocation modeling. Hoboken: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119509479.

Philipsen, W. J. M., & Stok, L. (1991). Graph coloring using neural networks. Proceedings of the IEEE International Symposium on Circuits and Systems, Singapore, 1597–1600. https://doi.org/10.1109/iscas.1991.176684.

Puterman, M. L. (2008). Markov decision processes: Discrete stochastic dynamic programming. Hoboken: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316887.

Raigorodskii, A. (2016). Models of random graphs and their applications to the web-graph analysis. Communications in Computer and Information Science, 573, 101–118. https://doi.org/10.1007/978-3-319-41718-9_5.

Raigorodskii, A. M. (2017). Small subgraphs in preferential attachment networks. Optimization Letters, 11(2), 249–257. https://doi.org/10.1007/s11590-015-0945-9.

Raigorodskii, A. M. & Karas V. S. (2022). Asymptotics of the independence number of a random subgraph of the graph G(n,r,https://doi.org/10.1134/S0001434622010138.

Romanuke, V. (2022). Pareto-Efficient Strategies in 2-Person Games In Staircase-Function Continuous And Finite Spaces. Decision Making: Applications in Management and Engineering, 5(1), 27–49. https://doi.org/10.31181/dmame0316022022r.

Romanuke, V. V. (2021). Refinement of acyclic-and-asymmetric payoff aggregates of pure strategy efficient Nash equilibria in finite noncooperative games by maximultimin and superoptimality. Decision Making: Applications in Management and Engineering, 4(2), 178–199. https://doi.org/10.31181/dmame210402178r.

Sahu, A., & Tapadar, R. (2006). Solving the Assignment problem using Genetic Algorithm and Simulated Annealing. Lecture Notes in Engineering and Computer Science. https://www.iaeng.org/IJAM/issues_v36/issue_1/IJAM_36_1_7.pdf Accessed 12 March 2023.

Shimizu, K., & Mori, R. (2022). Exponential-Time Quantum Algorithms for Graph Coloring Problems. Algorithmica, 84(12), 3603–3621. https://doi.org/10.1007/s00453-022-00976-2.

Shiryaev, A. N. (1996). Convergence of Probability Measures. Central Limit Theorem. Graduate Texts in Mathematics, 95, 308–378. https://doi.org/10.1007/978-1-4757-2539-1_4.

Shiryaev, A. N. (1996a). Mathematical Foundations of Probability Theory. Graduate Texts in Mathematics, 95, 131–307. https://doi.org/10.1007/978-1-4757-2539-1_3.

Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: Algorithmic, Game-Theoretic, and logical foundations. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511811654.

Thevenin, S., Zufferey, N., & Potvin, J. Y. (2017). Makespan minimisation for a parallel machine scheduling problem with preemption and job incompatibility. International Journal of Production Research, 55(6), 1588-1606. https://doi.org/10.1080/00207543.2016.1181285.

Thuijsman, F., Tijs, S. H., & Vrieze, O. J. (1991). Perfect equilibria in stochastic games. Journal of Optimization Theory and Applications, 69(2), 311–324. https://doi.org/10.1007/BF00940646.

Thuijsman, F., & Vrieze, K. (1993). Stationary ɛ-optimal strategies in stochastic games. Operations-Research-Spektrum, 15(1), 9–15. https://doi.org/10.1007/BF01783412.

Thuijsman, F., & Vrieze, O. J. (1987). The bad match; a total reward stochastic game. Operations-Research-Spektrum, 9(2), 93–99. https://doi.org/10.1007/BF01732644.

Thuijsman, F., & Vrieze, O. J. (1991). Easy Initial States in Stochastic Games. Theory and Decision Library, 7, 85–100. https://doi.org/10.1007/978-94-011-3760-7_8.

Thuijsman, F., & Vrieze, O. J. (1999). The Power of Threats in Stochastic Games. In Bardi, M., Raghavan, T.E.S., Parthasarathy, T. (Eds.) Stochastic and Differential Games. Annals of the International Society of Dynamic Games, vol 4 (pp. 343–357). Boston, MA: Birkhäuser. https://doi.org/10.1007/978-1-4612-1592-9_8.

Torabi Yeganeh, F., & Zegordi, S. H. (2020). A multi-objective optimization approach to project scheduling with resiliency criteria under uncertain activity duration. Annals of Operations Research, 285(1–2), 161–196. https://doi.org/10.1007/s10479-019-03375-z.

Umoren, R. A., Poore, J. A., Sweigart, L., Rybas, N., Gossett, E., Johnson, M., Allen, M., Scott, P. J., Truman, B., & Das, R. (2017). Teamstepps virtual teams: Interactive virtual team training and practice for health professional learners. Creative Nursing, 23(3), 184-191. https://doi.org/10.1891/1078-4535.23.3.184.

Ungureanu, V. (2018). Nash equilibrium conditions as extensions of some classical optimisation theorems. In Pareto-Nash-Stackelberg Game and Control Theory. Smart Innovation, Systems and Technologies, vol 89 (pp. 43–55). Cham: Springer. https://doi.org/10.1007/978-3-319-75151-1_2.

Ungureanu, V. (2018a). Nash equilibrium set function in dyadic mixed-strategy games. In Pareto-Nash-Stackelberg Game and Control Theory. Smart Innovation, Systems and Technologies, vol 89 (pp. 115–127). Cham: Springer. https://doi.org/10.1007/978-3-319-75151-1_6.

Ungureanu, V. (2018b). Pareto-Nash-Stackelberg Game and Control Theory: Intelligent Paradigms and Application. Smart Innovation, Systems and Technologies, 89. Cham: Springer. https://doi.org/10.1007/978-3-319-75151-1.

Ungureanu, V. (2018c). Sets of nash equilibria in bimatrix 2×3 mixed-strategy games. In Pareto-Nash-Stackelberg Game and Control Theory. Smart Innovation, Systems and Technologies, vol 89 (pp. 115–127). Cham: Springer. https://doi.org/10.1007/978-3-319-75151-1_4.

Ungureanu, V. (2018d). Sets of nash equilibria in polymatrix mixed-strategy games. In Pareto-Nash-Stackelberg Game and Control Theory. Smart Innovation, Systems and Technologies, vol 89 (pp. 83–96). Cham: Springer. https://doi.org/10.1007/978-3-319-75151-1_3.

Ungureanu, V. (2018e). Stackelberg equilibrium sets in polymatrix mixed-strategy generalized stackelberg games. In Pareto-Nash-Stackelberg Game and Control Theory. Smart Innovation, Systems and Technologies, vol 89 (pp. 129–165). Cham: Springer. https://doi.org/10.1007/978-3-319-75151-1_7.

Neumann, J. V., & Morgenstern, O. (2007). Theory of games and economic behavior. (1st ed.). Princeton: Princeton University Press. https://uvammm.github.io/docs/theoryofgames.pdf Accessed 12 March 2023.

Wang, Z., Li, S., Wang, Y., & Li, S. (2009). The research of task assignment based on ant colony algorithm. Proceedings of the IEEE International Conference on Mechatronics and Automation, ICMA, August 9–12, Changchun, China, 2334–2339. https://doi.org/10.1109/ICMA.2009.5246570.

Wang, Z., & Man, Y. (2021). Machine learning-based intermittent equipment scheduling model for flexible production process. In Ren, J., Shen, W., Man, Y., & Dong, L. (Eds.), Applications of Artificial Intelligence in Process Systems Engineering, 2021 (pp. 473–495). Amsterdam: Elsevier Inc. https://doi.org/10.1016/B978-0-12-821092-5.00018-8.

Whillans, A., Perlow, L., & Turek, A. (2021). Experimenting during the shift to virtual team work: Learnings from how teams adapted their activities during the COVID-19 pandemic. Information and Organization, 31(1), 100343. https://doi.org/10.1016/j.infoandorg.2021.100343.

Wu, S. S., & Sweeting, D. (1994). Heuristic algorithms for task assignment and scheduling in a processor network. Parallel Computing, 20(1), 1–14. https://doi.org/10.1016/0167-8191(94)90109-0.

Yang, G., & Chen, S. (2020). Resource allocation algorithm and job scheduling of virtual manufacturing workshop. Academic Journal of Manufacturing Engineering, 18(2), 155–161. https://ajme.ro/PDF_AJME_2020_2/L22.pdf Accessed 12 March 2023.

Zais, M., & Laguna, M. (2016). A graph coloring approach to the deployment scheduling and unit assignment problem. Journal of Scheduling, 19(1), 73–90. https://doi.org/10.1007/s10951-015-0434-0.

Zhang, H., Seshadri, R., Prakash, A. A., Antoniou, C., Pereira, F. C., & Ben-Akiva, M. (2021). Improving the accuracy and efficiency of online calibration for simulation-based Dynamic Traffic Assignment. Transportation Research Part C: Emerging Technologies, 128, 103195. https://doi.org/10.1016/j.trc.2021.103195.

Zhu, A., & Yang, S. X. (2006). A neural network approach to dynamic task assignment of multirobots. IEEE Transactions on Neural Networks, 17(5), 1278–1287. https://doi.org/10.1109/TNN.2006.875994.

Zhukovskii, M. E., & Raigorodskii, A. M. (2015). Random graphs: models and asymptotic characteristics. Russian Mathematical Surveys, 70(1), 33. https://doi.org/10.1070/rm2015v070n01abeh004936.

Published

2023-07-25

How to Cite

Kowalska-Styczeń, A., Kravets, P., Lytvyn, V., Vysotska, V., & Oksana Markiv. (2023). Game problem of assigning staff to project implementation. Decision Making: Applications in Management and Engineering, 6(2), 691–721. https://doi.org/10.31181/dmame622023713