Energy efficient smart home heating system using renewable energy source with fuzzy control design
DOI:
https://doi.org/10.31181/dmame622023825Keywords:
Smart home heating system, Fuzzy control design, Fuzzy system, Energy efficiency, Sustainable living, Renewable energy sourceAbstract
This research article presents an energy- efficient smart home heating system that uses a renew-able energy source and incorporates fuzzy control design. The objective of the study is to design a heating system that optimizes energy consumption while providing a comfortable indoor temperature. The main methods used in the study include the integration of a renewable energy source, such as solar energy or geothermal energy, with a fuzzy control system that adjusts the heating power based on indoor and outdoor temperature, humidity, and occupancy. The main results of the study show that the proposed heating system can reduce energy consumption by up to 40% compared to conventional heating systems, while maintaining a comfortable indoor temperature. The fuzzy control system provides precise control of the heating power and ensures efficient use of the renewable energy source. The main conclusion of the article is that the proposed smart home heating system is a viable solution for reducing energy consumption and promoting a sustainable lifestyle, especially in areas with abundant renewable energy sources.
Downloads
References
Abraham, D. S., Chandrasekar, B., Rajamanickam, N., Vishnuram, P., Ramakrishnan, V., Bajaj, M., Piecha, M., Blazek, V., & Prokop, L. (2023). Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station. Energies, 16(6), 2753. https://doi.org/10.3390/en16062753
Alowaidi, M. (2022). Fuzzy efficient energy algorithm in smart home environment using internet of things for renewable energy resources. Energy Reports, 8, 2462-2471. https://doi.org/10.1016/j.egyr.2022.01.177
Aprea, C., Mastrullo, R., & Renno, C. (2004). Fuzzy control of the compressor speed in a refrigeration plant. International Journal of Refrigeration, 27(6), pp. 639–648. https://doi.org/10.1016/j.ijrefrig.2004.02.004
Arfaoui, J., Feki, E., & Mami, A. (2015). PID and fuzzy logic optimized controller for temperature control in a cavity of refrigeration. In Proceedings of the IREC2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, pp. 1–6. https://doi.org/10.1109/IREC.2015.7110951
Barelli, L., Bidini, G., & Arce, R. (2003) Fuzzy Logic Regulator for the Performance Improvement and the Energy Consumption Reduction of an Industrial Chiller. Proceedings of the ASME 2003 International Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Volumes 1 and 2. Washington, DC, USA. November 15–21, pp. 1215-1224. https://doi.org/10.1115/IMECE2003-41910
Belman-Flores, J. M., Ledesma, S., Rodríguez-Valderrama, D. A., & Hernández-Fusilier, D. (2019). Energy optimization of a domestic refrigerator controlled by a fuzzy logic system using the status of the door. International Journal of Refrigeration, 104, pp. 1–8. https://doi.org/10.1016/j.ijrefrig.2019.04.025
Chu, C. M., Jong, T. L., & Huang, Y. W. (2005). Thermal comfort control on multi-room fan coil unit system using LEE-based fuzzy logic. Energy Convers. Manag., 46(9–10), pp. 1579–1593. https://doi.org/10.1016/j.enconman.2004.08.002
Derrouazin, A., Aillerie, M., Mekkakia-Maaza, N., & Charles, J. P. (2017). Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system. Energy Conversion and Management, 148, 238-250. https://doi.org/10.1016/j.enconman.2017.05.046
Duhui J., Hongshe C., Rui S., & Wei L., (2020). Study fuzzy variable supplied water temperature control for air-to-water heat pumps connected to a residential floor heating, IOP Conf. Series: Earth and Environmental Science 467(1), 012192. https://doi.org/10.1088/1755-1315/467/1/012192
Duhui, J., & Cui, H. (2020). Study on Fuzzy Control for Air-To-Water Heat Pumps Connected to a Residential Floor Heating System, Mathematical Problems in Engineering Volume 2020(11), https://doi.org/10.1155/2020/3861824
Durur, H., & Yokuş, A. (2021). Exact solutions of (2 + 1) - Ablowitz-Kaup-Newell-Segur equation. Applied Mathematics and Nonlinear Sciences. 6 (2), 381–386. https://doi.org/10.2478/amns.2020.2.00074
Ekren, O., & Kücüka, S. (2009). Energy saving potential of chiller system with fuzzy logic control. International Journal of Energy Research., 34(10), pp. 897–906. https://doi.org/10.1002/er.1621
El Zerk, A., & Ouassaid, M. (2023). Real-Time Fuzzy Logic Based Energy Management System for Microgrid Using Hardware in the Loop. Energies, 16(5), 2244. https://doi.org/10.3390/en16052244
Fujitsu (2020). Design and Technical Manual, Fujitsu General Limited, DA_SHP001EF_01.
German, R. R., Eva, L. S., & Carlos, F. B. (2019). Model predictive control optimization via genetic algorithm using a detailed building energy model, Energies, vol. 12(1), p. 34. https://doi.org/10.3390/en12010034
Gozuoglu, A., Ozgonenel, O., & Karagol, S. (2019). Fuzzy Logic Based Low Cost Smart Home Application. In 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 64-68). https://doi.org/10.23919/ELECO47770.2019.8990409
Jafari, M., Malekjamshidi, Z., Zhu, J., & Khooban, M. H. (2018). A novel predictive fuzzy logic-based energy management system for grid-connected and off-grid operation of residential smart microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), 1391-1404. https://doi.org/10.1109/JESTPE.2018.2882509
Jiang, D. H., Cui, H. S., Jiang, K. D., & Yang, J. L. (2019). Study building heat storage operation strategy for air-to-water heat pumps connected to a residential floor heating system, IOP Conf. Ser.: Earth Environ. Sci., vol. 227, p. 4. https://doi.org/10.1088/1755-1315/227/4/042054
Khayyam, H., Nahavandi, S., Hu, E., Kouzani, A., Chonka, A., Abawajy, J., Marano, V., & Davis, S. (2011). Intelligent energy management control of vehicle air conditioning via look-ahead system. Applied Thermal Engineering, 31(16), pp. 3147–3160. https://doi.org/10.1016/j.applthermaleng.2011.05.023
Killian, M., & Kozek, M. (2018). Implementation of cooperative Fuzzy model predictive control for an energy-efficient office building, Energy and Buildings, vol. 158, pp. 1404–1416. https://doi.org/10.1016/j.enbuild.2017.11.021
Lin X., Longjie W., Chenlei Z., Xiao L., & Bo F., (2022). Research on Fuzzy Control Strategy of Heating Condition Based on Electric Vehicle Heat Pump Air Conditioner, Academic Journal of Science and Technology 3(3), 175-181. https://doi.org/10.54097/ajst.v3i3.2932
Marín, L. G., Cruz, N., Sáez, D., Sumner, M., & Núñez, A. (2019). Prediction interval methodology based on fuzzy numbers and its extension to fuzzy systems and neural networks. Expert Systems with Applications. 119, 128–141. https://doi.org/10.1016/j.eswa.2018.10.043
Miao, Z. (2023). Intelligent control system for the electric vehicle heat pump air conditioner based on machine learning. Frontiers in Energy Research. 11. https://doi.org/10.3389/fenrg.2023.1142243
Mraz, M. (2001). The design of intelligent control of a kitchen refrigerator. Math. Comput. Simul., 56(3), pp. 259–267. https://doi.org/10.1016/S0378-4754(01)00281-6
Nasution, H. (2008). Development of fuzzy logic control for vehicle air conditioning system. Telkomnika, 6(2), 73. https://doi.org/10.12928/telkomnika.v6i2.553
Nguyen, A. T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., & Sugeno, M. (2019). Fuzzy control systems: Past, present and future. IEEE Comput. Intell. Mag. 14 (1), 56–68. https://doi.org/10.1109/MCI.2018.2881644
Nilpueng, K., Ahn, H. S., Jerng, D. W., & Wongwises, S. (2019). Heat transfer and flow characteristics of sinusoidal wavy plate fin heat sink with and without crosscut flow control. International Journal of Heat and Mass Transfer. 137, 565–572. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.114
Nyers, A., Pek Z., & Nyers J. (2018). Dynamical behavior of a heat pump coaxial evaporator considering the phase border’s impact on convergence, Facta Universitatis Series: Mechanical Engineering, 16(2), pp. 249-259, https://doi.org/10.22190/FUME180424019N
Nyers, A., & Nyers, J. (2023). Enhancing the Energy Efficiency—COP of the Heat Pump Heating System by Energy Optimization and a Case Study. Energies, 16(7), 2981. https://doi.org/10.3390/en16072981.
Parameshwaran, R., Karunakaran, R., Kumar, C. V. R. & Iniyan, S. (2010). Energy conservative building air conditioning system controlled and optimized using fuzzy-genetic algorithm. Energy Buildings, 42(5), pp. 745–762. https://doi.org/10.1016/j.enbuild.2009.11.014
Sahin, A.Ş., Kılıç, B., & Kılıç, U. (2011). Optimization of heat pump using fuzzy logic and genetic algorithm. Heat Mass Transfer 47(12), pp. 1553–1560. https://doi.org/10.1007/s00231-011-0818-4
Santa, R. (2021). Investigations of the performance of a heat pump with internal heat exchanger, Journal of thermal analysis and calorimetry 147(15), 8499–8508. https://doi.org/10.1007/s10973-021-11130-5
Santa, R., Bošnjaković, M., & Čikić, A., (2022). Experimental and numerical testing of heat pump evaporator, Applied Sciences-Basel 12(23), 11973. https://doi.org/10.3390/app122311973
Schmitz, J. E., Silva, F. V., Neves Filho, L. C., Fileti, A. M. F., & Silveira, V. (2014). Multivariable fuzzy control strategy for an experimental chiller system. Journal of Food Process Engineering., 37(2), pp. 160–168. https://doi.org/10.1111/jfpe.12071
Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems–a review. Renewable and sustainable energy reviews, 48, 585-607. https://doi.org/10.1016/j.rser.2015.04.037
TeGrotenhuis, W., Butterfield, A., Caldwell, D., Crook, A., & Winkelman, A. (2017). Modeling and design of a high efficiency hybrid heat pump clothes dryer. Applied Thermal Engineering, 124, pp. 170-177. https://doi.org/10.1016/j.applthermaleng.2017.05.048
Vivas, F. J., Segura, F., & Andújar, J. M. (2022). Fuzzy logic-based energy management system for grid-connected residential DC microgrids with multi-stack fuel cell systems: A multi-objective approach. Sustainable Energy, Grids and Networks, 32, 100909. https://doi.org/10.1016/j.segan.2022.100909
Wang, A., Cao, F., Fang, J., Jia, F., Yin, X., & Wang, X. (2022). Research on efficient defrosting control logic for transcritical CO2 electric vehicle heat pump airconditioning system. International Journal of Refrigeration. 138, 13–22. https://doi.org/10.1016/j.ijrefrig.2022.03.028
Wang, Y., Ye, Z., Song, Y., Yin, X., & Cao, F. (2021). Experimental analysis of reverse cycle defrosting and control strategy optimization for transcritical carbon dioxide heat pump water heater. Applied Thermal Engineering. 183, 116213. https://doi.org/10.1016/j.applthermaleng.2020.116213
Wang, Z., Yang, R., & Wang, L. (2010). Multi-agent control system with intelligent optimization for smart and energy-efficient buildings. In IECON 2010-36th annual conference on IEEE industrial electronics society (pp. 1144-1149). https://doi.org/10.1109/IECON.2010.5675530
Xi, Z., Yao, R., Li, J., Du, C., Yu, Z., & Li, B. (2021). Experimental studies on hot gas bypass defrosting control strategies for air source heat pumps. Journal of Building Engineering. 43, 103165. https://doi.org/10.1016/j.jobe.2021.103165
Xie, Y., Liu, Z., Liu, J., Li, K., Zhang, Y., Wu, C., Wang, P., & Wang, X., (2020). A Self-learning intelligent passenger vehicle comfort cooling system control strategy. Applied Thermal Engineering, 166, p.114646 https://doi.org/10.1016/j.applthermaleng.2019.114646
Xie, Y., Yang, P., Qian, Y., Zhang, Y., Li, K., & Zhou, Y. (2022). A two-layered ecocooling control strategy for electric car air conditioning systems with integration of dynamic programming and fuzzy PID. Applied Thermal Engineering. 211, 118488. https://doi.org/10.1016/j.applthermaleng.2022.118488
Yuan, Y., Lin, W., Mao, X., Li, W., Yang, L., Wei, J., & Xiao, B. (2019). Performance Analysis of Heat Pump Dryer with Unit-Room in Cold Climate Regions. Energies. 12(16), 3125. https://doi.org/10.3390/en12163125
Zangeneh, M., Aghajari, E., & Forouzanfar, M. (2022). Design and implementation of an intelligent multi-input multi-output Sugeno fuzzy logic controller for managing energy resources in a hybrid renewable energy power system based on Arduino boards. Soft Computing, 26(3), 1459-1473. https://doi.org/10.1007/s00500-021-06288-x
Zheng, S., Wei, M., Song, P., Hu, C., & Tian, R. (2020). Thermodynamics and flow unsteadiness analysis of trans-critical CO2 in a scroll compressor for mobile heat pump air-conditioning system. Applied Thermal Engineering. 175, 115368. https://doi.org/10.1016/j.applthermaleng.2020.115368
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.