Application of GIS and IoT Technology based MCDM for Disaster Risk Management: Methods and Case Study
DOI:
https://doi.org/10.31181/dmame712024929Keywords:
Disaster Management, Flooding, Internet of Things, Geographic Information System, Convolutional Deep Neural Networks, Multi-Criteria Decision MakingAbstract
This study proposes a two-phase framework to enhance disaster management strategies for flooding using Geographic Information System (GIS) and Internet of Things (IoT) real-time data obtained using drones. The first phase aims to predict the governorate most prone to flooding using GIS and four forecasting models. The second phase involves selecting optimal locations for drone takeoff and landing using GIS with multi-criteria decision making. The neutrosophic ordinal priority approach is used to weight the criteria for selecting the best locations. A case study from the Egyptian Mediterranean Coast is used to measure the effectiveness and applicability of the framework. Results indicate that the Port Said governorate is the most vulnerable to flooding, and the top 10 suitable sites for drone takeoff and landing are suggested for this governorate. The limitations of the case study are discussed, such as data availability and reliability, as well as potential biases in the methodology. This study suggests future research directions to address these limitations and enhance the effectiveness of the proposed framework. Overall, this study contributes to the field of disaster risk management by providing a practical and innovative approach to enhance disaster preparedness and response using GIS and IoT technologies.
Downloads
References
Torani, S., Majd, P., Maroufi, S., Dowlati, M., & Sheikhi, R. (2019). The importance of education on disasters and emergencies: A review article. Journal of Education and Health Promotion, 8(1), 85. https://doi.org/10.4103/jehp.jehp_262_18
Zuccaro, G., Leone, M. F., & Martucci, C. (2020). Future research and innovation priorities in the field of natural hazards, disaster risk reduction, disaster risk management and climate change adaptation: a shared vision from the ESPREssO project. International Journal of Disaster Risk Reduction, 51, 101783. https://doi.org/10.1016/j.ijdrr.2020.101783
Kim, Y., & Kim, M. Y. (2022). Factors affecting household disaster preparedness in South Korea. PLOS ONE, 17(10), e0275540. https://doi.org/10.1371/journal.pone.0275540
Bachri, S., Sumarmi, Irawan, L. Y., Utaya, S., Wirawan, R., Nurdiansyah, F. D., Nurjanah, A. E., Tyas, L. W. N., Adillah, A. A., & Setia, D. (2022). FOSS (Free Open Source Software) Integration to Implement WebGIS-Based Information System of Kelud Volcano. IOP Conference Series: Earth and Environmental Science, 1066(1), 012010. https://doi.org/10.1088/1755-1315/1066/1/012010
Rehman, J., Sohaib, O., Asif, M., & Pradhan, B. (2019). Applying systems thinking to flood disaster management for a sustainable development. International Journal of Disaster Risk Reduction, 36, 101101.
https://doi.org/10.1016/j.ijdrr.2019.101101
Rana, I. A. (2020). Disaster and climate change resilience: A bibliometric analysis. International Journal of Disaster Risk Reduction, 50, 101839. https://doi.org/10.1016/j.ijdrr.2020.101839
Rusk, J., Maharjan, A., Tiwari, P., Chen, T.-H. K., Shneiderman, S., Turin, M., & Seto, K. C. (2022). Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. Science of The Total Environment, 804, 150039. https://doi.org/10.1016/j.scitotenv.2021.150039
Wang, Q., & Wang, H. (2022). Spatiotemporal dynamics and evolution relationships between land-use/land cover change and landscape pattern in response to rapid urban sprawl process: A case study in Wuhan, China. Ecological Engineering, 182, 106716. https://doi.org/10.1016/j.ecoleng.2022.106716
Molotoks, A., Smith, P., & Dawson, T. P. (2021). Impacts of land use, population, and climate change on global food security. Food and Energy Security, 10(1), e261. https://doi.org/10.1002/fes3.261
Khan, W. Z., Rehman, M. H., Zangoti, H. M., Afzal, M. K., Armi, N., & Salah, K. (2020). Industrial internet of things: Recent advances, enabling technologies and open challenges. Computers & Electrical Engineering, 81, 106522. https://doi.org/10.1016/j.compeleceng.2019.106522
van Ginkel, M., & Biradar, C. (2021). Drought Early Warning in Agri-Food Systems. Climate, 9(9), 134.
https://doi.org/10.3390/cli9090134
Yar, H., Hussain, T., Khan, Z. A., Koundal, D., Lee, M. Y., & Baik, S. W. (2021). Vision Sensor-Based Real-Time Fire Detection in Resource-Constrained IoT Environments. Computational Intelligence and Neuroscience, 2021, 1–15. https://doi.org/10.1155/2021/5195508
Shah, S. A., Seker, D. Z., Hameed, S., & Draheim, D. (2019). The Rising Role of Big Data Analytics and IoT in Disaster Management: Recent Advances, Taxonomy and Prospects. IEEE Access, 7, 54595–54614. https://doi.org/10.1109/ACCESS.2019.2913340
Fedele, R., & Merenda, M. (2020). An IoT System for Social Distancing and Emergency Management in Smart Cities Using Multi-Sensor Data. Algorithms, 13(10), 254. https://doi.org/10.3390/a13100254
Ramesh, A., Rajkumar, S., & Jenila Livingston, L. M. (2020). Disaster Management in Smart Cities using IoT and Big Data. Journal of Physics: Conference Series, 1716(1), 012060. https://doi.org/10.1088/1742-6596/1716/1/012060
Gohari, A., Ahmad, A. Bin, Rahim, R. B. A., Supa’at, A. S. M., Abd Razak, S., & Gismalla, M. S. M. (2022). Involvement of Surveillance Drones in Smart Cities: A Systematic Review. IEEE Access, 10, 56611–56628. https://doi.org/10.1109/ACCESS.2022.3177904
Dhinakaran, D., Udhaya Sankar, S. M., Latha, B. C., Anns, A. E. J., & Sri, V. K. (2023). Dam Management and Disaster Monitoring System using IoT. 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), 1197–1201. https://doi.org/10.1109/ICSCDS56580.2023.10105132
Han, S., Huang, H., Luo, Z., & Foropon, C. (2019). Harnessing the power of crowdsourcing and Internet of Things in disaster response. Annals of Operations Research, 283(1–2), 1175–1190. https://doi.org/10.1007/s10479-018-2884-1
Pradhan, M. (2019). Interoperability for Disaster Relief Operations in Smart City Environments. 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 711–714. https://doi.org/10.1109/WF-IoT.2019.8767169
Fawzy, D., Moussa, S. M., & Badr, N. L. (2022). The Internet of Things and Architectures of Big Data Analytics: Challenges of Intersection at Different Domains. IEEE Access, 10, 4969–4992. https://doi.org/10.1109/ACCESS.2022.3140409
Zhang, F., Qiao, Q., Wang, J., & Liu, P. (2022). Data-driven AI emergency planning in process industry. Journal of Loss Prevention in the Process Industries, 76, 104740. https://doi.org/10.1016/j.jlp.2022.104740
Jiang, H. (2019). Mobile Fire Evacuation System for Large Public Buildings Based on Artificial Intelligence and IoT. IEEE Access, 7, 64101–64109. https://doi.org/10.1109/ACCESS.2019.2915241
Guo, K., & Zhang, L. (2022a). Adaptive multi-objective optimization for emergency evacuation at metro stations. Reliability Engineering & System Safety, 219, 108210. https://doi.org/10.1016/j.ress.2021.108210
Rabiei, P., Arias-Aranda, D., & Stantchev, V. (2023). Introducing a novel multi-objective optimization model for volunteer assignment in the post-disaster phase: Combining fuzzy inference systems with NSGA-II and NRGA. Expert Systems with Applications, 226, 120142. https://doi.org/10.1016/j.eswa.2023.120142
Mahmoodi, A., Jasemi Zergani, M., Hashemi, L., & Millar, R. (2022). Analysis of optimized response time in a new disaster management model by applying metaheuristic and exact methods. Smart and Resilient Transportation, 4(1), 22–42. https://doi.org/10.1108/SRT-01-2021-0002
Ogunjinmi, P. D., Park, S. S., Kim, B., & Lee, D. E. (2022). Rapid Post-Earthquake Structural Damage Assessment Using Convolutional Neural Networks and Transfer Learning. Sensors, 22(9), 3471. https://doi.org/10.3390/s22093471
Youssef, A. M., Pradhan, B., Dikshit, A., & Mahdi, A. M. (2022). Comparative study of convolutional neural network (CNN) and support vector machine (SVM) for flood susceptibility mapping: a case study at Ras Gharib, Red Sea, Egypt. Geocarto International, 37(26), 11088–11115. https://doi.org/10.1080/10106049.2022.2046866
Kaur, S., Gupta, S., Singh, S., & Arora, T. (2022). A Review on Natural Disaster Detection in Social Media and Satellite Imagery Using Machine Learning and Deep Learning. International Journal of Image and Graphics, 22(05), 2250040. https://doi.org/10.1142/S0219467822500401
Aliahmadi, A., Nozari, H., Ghahremani-Nahr, J., & Szmelter-Jarosz, A. (2022). Evaluation of key impression of resilient supply chain based on artificial intelligence of things (AIoT). Journal of Fuzzy Extension and Applications, 3(3), 201–211. https://doi.org/10.22105/jfea.2022.345008.1221
ortino, G., Savaglio, C., Spezzano, G., & Zhou, M. (2021). Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1), 223–236. https://doi.org/10.1109/TSMC.2020.3042898
De Donno, M., Tange, K., & Dragoni, N. (2019). Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access, 7, 150936–150948. https://doi.org/10.1109/ACCESS.2019.2947652
Khan, R., Shabaz, M., Hussain, S., Ahmad, F., & Mishra, P. (2022). Early flood detection and rescue using bioinformatic devices, internet of things (IOT) and Android application. World Journal of Engineering, 19(2), 204–215. https://doi.org/10.1108/WJE-05-2021-0269
Anon, K., Ranjith, V., & Varalakshmi, K. (2021). IOT INTEGRATED FOREST FIRE DETECTION AND PREDICTION USING NODE MCU. International Journal of Electronics Engineering and Applications, IX(I), 28. https://doi.org/10.30696/IJEEA.IX.I.2021.28-35
Khan, A., Gupta, S., & Gupta, S. K. (2020). Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International Journal of Disaster Risk Reduction, 47, 101642. https://doi.org/10.1016/j.ijdrr.2020.101642
Esposito, M., Palma, L., Belli, A., Sabbatini, L., & Pierleoni, P. (2022). Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors, 22(6), 2124. https://doi.org/10.3390/s22062124
Hajjaji, Y., Boulila, W., Farah, I. R., Romdhani, I., & Hussain, A. (2021). Big data and IoT-based applications in smart environments: A systematic review. Computer Science Review, 39, 100318. https://doi.org/10.1016/j.cosrev.2020.100318
Lee, S., Gandla, S., Naqi, M., Jung, U., Youn, H., Pyun, D., Rhee, Y., Kang, S., Kwon, H.-J., Kim, H., Lee, M. G., & Kim, S. (2020). All-Day Mobile Healthcare Monitoring System Based on Heterogeneous Stretchable Sensors for Medical Emergency. IEEE Transactions on Industrial Electronics, 67(10), 8808–8816. https://doi.org/10.1109/TIE.2019.2950842
Solpico, D., Tan, M. I., Manalansan, E. J., Zagala, F. A., Leceta, J. A., Lanuza, D. F., Bernal, J., Ramos, R. D., Villareal, R. J., Cruz, X. M., dela Cruz, J. A., Lagazo, D. J., Honrado, J. L., Abrajano, G., Libatique, N. J., & Tangonan, G. (2019). Application of the V-HUB Standard using LoRa Beacons, Mobile Cloud, UAVs, and DTN for Disaster-Resilient Communications. 2019 IEEE Global Humanitarian Technology Conference (GHTC), 1–8.
https://doi.org/10.1109/GHTC46095.2019.9033139
Cui, F. (2020). Deployment and integration of smart sensors with IoT devices detecting fire disasters in huge forest environment. Computer Communications, 150, 818–827. https://doi.org/10.1016/j.comcom.2019.11.051
Pradhan, M. (2021). Federation Based on MQTT for Urban Humanitarian Assistance and Disaster Recovery Operations. IEEE Communications Magazine, 59(2), 43–49. https://doi.org/10.1109/MCOM.001.2000937
Siddiqi, Yu, & Joung. (2019). 5G Ultra-Reliable Low-Latency Communication Implementation Challenges and Operational Issues with IoT Devices. Electronics, 8(9), 981. https://doi.org/10.3390/electronics8090981
Mao, W., Zhao, Z., Chang, Z., Min, G., & Gao, W. (2021). Energy-Efficient Industrial Internet of Things: Overview and Open Issues. IEEE Transactions on Industrial Informatics, 17(11), 7225–7237. https://doi.org/10.1109/TII.2021.3067026
Li, W., Batty, M., & Goodchild, M. F. (2020). Real-time GIS for smart cities. International Journal of Geographical Information Science, 34(2), 311–324. https://doi.org/10.1080/13658816.2019.1673397
Breunig, M., Bradley, P. E., Jahn, M., Kuper, P., Mazroob, N., Rösch, N., Al-Doori, M., Stefanakis, E., & Jadidi, M. (2020). Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information, 9(2), 95. https://doi.org/10.3390/ijgi9020095
Nabil M. AbdelAziz, & Safa Al-Saeed. (2023). Mitigating Landslide Hazards in Qena Governorate of Egypt: A GIS-based Neutrosophic PAPRIKA Approach. Neutrosophic Systems with Applications, 7(SE-Articles), 13–35. https://doi.org/10.61356/j.nswa.2023.37
Mukherjee, M., Abhinay, K., Rahman, M. M., Yangdhen, S., Sen, S., Adhikari, B. R., Nianthi, R., Sachdev, S., & Shaw, R. (2023). Extent and evaluation of critical infrastructure, the status of resilience and its future dimensions in South Asia. Progress in Disaster Science, 17, 100275. https://doi.org/10.1016/j.pdisas.2023.100275
Hawchar, L., Naughton, O., Nolan, P., Stewart, M. G., & Ryan, P. C. (2020). A GIS-based framework for high-level climate change risk assessment of critical infrastructure. Climate Risk Management, 29, 100235.
https://doi.org/10.1016/j.crm.2020.100235
Saini, K., Kalra, S., & Sood, S. K. (2023). Fog-inspired framework for emergency rescue operations in post-disaster scenario. The Journal of Supercomputing. https://doi.org/10.1007/s11227-023-05475-x
-Köhle, M., Cristofari, G., Wenk, M., & Fuchs, S. (2019). The importance of indicator weights for vulnerability indices and implications for decision making in disaster management. International Journal of Disaster Risk Reduction, 36, 101103. https://doi.org/10.1016/j.ijdrr.2019.101103
Safa Al-Saeed, & Nabil M. AbdelAziz. (2023). Integrated Neutrosophic Best-Worst Method for Comprehensive Analysis and Ranking of Flood Risks: A Case Study Approach from Aswan, Egypt. Neutrosophic Systems with Applications, 5(SE-Articles), 10–26. https://doi.org/10.61356/j.nswa.2023.24
Bejani, M. M., & Ghatee, M. (2021). A systematic review on overfitting control in shallow and deep neural networks. Artificial Intelligence Review, 54(8), 6391–6438. https://doi.org/10.1007/s10462-021-09975-1
Devaraj, J., Ganesan, S., Elavarasan, R., & Subramaniam, U. (2021). A Novel Deep Learning Based Model for Tropical Intensity Estimation and Post-Disaster Management of Hurricanes. Applied Sciences, 11(9), 4129. https://doi.org/10.3390/app11094129
Kyrkou, C., & Theocharides, T. (2019). Deep-Learning-Based Aerial Image Classification for Emergency Response Applications Using Unmanned Aerial Vehicles. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2019-June, 517–525. https://doi.org/10.1109/CVPRW.2019.00077
Kyrkou, C., & Theocharides, T. (2020). EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous Convolutional Feature Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1687–1699. https://doi.org/10.1109/JSTARS.2020.2969809
Munawar, H. S., Ullah, F., Qayyum, S., Khan, S. I., & Mojtahedi, M. (2021). UAVs in Disaster Management: Application of Integrated Aerial Imagery and Convolutional Neural Network for Flood Detection. Sustainability, 13(14), 7547. https://doi.org/10.3390/su13147547
Anbarasan, M., Muthu, B., Sivaparthipan, C. B., Sundarasekar, R., Kadry, S., Krishnamoorthy, S., Samuel R., D. J., & Dasel, A. A. (2020). Detection of flood disaster system based on IoT, big data and convolutional deep neural network. Computer Communications, 150, 150–157. https://doi.org/10.1016/j.comcom.2019.11.022
Patil, P. G., Elluru, V., & Shivashankar, S. (2023). A new approach to MCDM problems by fuzzy binary soft sets. Journal of Fuzzy Extension and Applications. https://doi.org/10.22105/jfea.2023.390059.1257
Ibrahim M. Hezam. (2023). An Intelligent Decision Support Model for Optimal Selection of Machine Tool under Uncertainty: Recent Trends. Neutrosophic Systems with Applications, 3(SE-Articles), 35–44. https://doi.org/10.61356/j.nswa.2023.12
Sarma, D., Das, A., Dutta, P., & Bera, U. K. (2022). A Cost Minimization Resource Allocation Model for Disaster Relief Operations With an Information Crowdsourcing-Based MCDM Approach. IEEE Transactions on Engineering Management, 69(5), 2454–2474. https://doi.org/10.1109/TEM.2020.3015775
Gamal, A., & Mohamed, M. (2023). A Hybrid MCDM Approach for Industrial Robots Selection for the Automotive Industry. Neutrosophic Systems with Applications, 4(SE-Articles), 1–11. https://doi.org/10.61356/j.nswa.2023.13
Waleed Tawfiq Al-Nami. (2023). Ranking and Analysis the Strategies of Crowd Management to Reduce the Risks of Crushes and Stampedes in Crowded Environments and Ensure the Safety of Passengers. Neutrosophic Systems with Applications, 8(SE-Articles), 61–78. https://doi.org/10.61356/j.nswa.2023.50
Ortíz-Barrios, M., Jaramillo-Rueda, N., Gul, M., Yucesan, M., Jiménez-Delgado, G., & Alfaro-Saíz, J.-J. (2023). A Fuzzy Hybrid MCDM Approach for Assessing the Emergency Department Performance during the COVID-19 Outbreak. International Journal of Environmental Research and Public Health, 20(5), 4591. https://doi.org/10.3390/ijerph20054591
Guo, K., & Zhang, L. (2022b). Multi-objective optimization for improved project management: Current status and future directions. Automation in Construction, 139, 104256. https://doi.org/10.1016/j.autcon.2022.104256
Ding, Z., Zhao, Z., Liu, D., & Cao, Y. (2021). Multi-objective scheduling of relief logistics based on swarm intelligence algorithms and spatio-temporal traffic flow. Journal of Safety Science and Resilience, 2(4), 222–229. https://doi.org/10.1016/j.jnlssr.2021.07.003
Ershadi, M. M., & Shemirani, H. S. (2022). A multi-objective optimization model for logistic planning in the crisis response phase. Journal of Humanitarian Logistics and Supply Chain Management, 12(1), 30–53. https://doi.org/10.1108/JHLSCM-11-2020-0108
Ma, Y., Xu, W., Qin, L., Zhao, X., & Du, J. (2019). Emergency shelters location-allocation problem concerning uncertainty and limited resources: a multi-objective optimization with a case study in the Central area of Beijing, China. Geomatics, Natural Hazards and Risk, 10(1), 1242–1266. https://doi.org/10.1080/19475705.2019.1570977
Chen, J., Hu, M., Shen, H., Lan, H., & Wu, Z. (2020). Study of Modeling Earthquake Emergency Rescue Material Scheduling Problems by Multi-objective Optimization Algorithms. 2020 2nd International Conference on Industrial Artificial Intelligence (IAI), 1–5. https://doi.org/10.1109/IAI50351.2020.9262178
Fu, L., Ding, M., & Zhang, Q. (2022). Flood risk assessment of urban cultural heritage based on PSR conceptual model with game theory and cloud model – A case study of Nanjing. Journal of Cultural Heritage, 58, 1–11. https://doi.org/10.1016/j.culher.2022.09.017
Cao, M., Tian, L., & Li, C. (2020). A Secure Video Steganography Based on the Intra-Prediction Mode (IPM) for H264. Sensors, 20(18), 5242. https://doi.org/10.3390/s20185242
Torresan, S., Furlan, E., Critto, A., Michetti, M., & Marcomini, A. (2020). Egypt’s Coastal Vulnerability to Sea‐Level Rise and Storm Surge: Present and Future Conditions. Integrated Environmental Assessment and Management, 16(5), 761–772. https://doi.org/10.1002/ieam.4280
Mohamed, S. A. (2020). Coastal vulnerability assessment using GIS-Based multicriteria analysis of Alexandria-northwestern Nile Delta, Egypt. Journal of African Earth Sciences, 163, 103751. https://doi.org/10.1016/j.jafrearsci.2020.103751
EL-GEZIRY, T. M. (2020). On the Vulnerability of the Egyptian Mediterranean Coast to the Sea Level Rise. Athens Journal of Sciences, 7(4), 195–206. https://doi.org/10.30958/ajs.7-4-1
El-Masry, E. A., El-Sayed, M. K., Awad, M. A., El-Sammak, A. A., & Sabarouti, M. A. El. (2022). Vulnerability of tourism to climate change on the Mediterranean coastal area of El Hammam–EL Alamein, Egypt. Environment, Development and Sustainability, 24(1), 1145–1165. https://doi.org/10.1007/s10668-021-01488-9
Henderi, H. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. IJIIS: International Journal of Informatics and Information Systems, 4(1), 13–20. https://doi.org/10.47738/ijiis.v4i1.73
Kalita, I., & Roy, M. (2022). Inception time DCNN for land cover classification by analyzing multi-temporal remotely sensed images. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022-July, 5736–5739. https://doi.org/10.1109/IGARSS46834.2022.9884128
Cantero-Chinchilla, S., Simpson, C. A., Ballisat, A., Croxford, A. J., & Wilcox, P. D. (2023). Convolutional neural networks for ultrasound corrosion profile time series regression. NDT & E International, 133, 102756. https://doi.org/10.1016/j.ndteint.2022.102756
Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C., Schmidt, D. F., Weber, J., Webb, G. I., Idoumghar, L., Muller, P.-A., & Petitjean, F. (2020). InceptionTime: Finding AlexNet for time series classification. Data Mining and Knowledge Discovery, 34(6), 1936–1962. https://doi.org/10.1007/s10618-020-00710-y
Wang, J., & Feng, L. (2016). Curve-fitting models for fossil fuel production forecasting: Key influence factors. Journal of Natural Gas Science and Engineering, 32, 138–149. https://doi.org/10.1016/j.jngse.2016.04.013. https://doi.org/10.1016/j.jngse.2016.04.013
Faisal, A. Al, Kafy, A.- Al, Afroz, F., & Rahaman, Z. A. (2023). Exploring and forecasting spatial and temporal patterns of fire hazard risk in Nepal’s tiger conservation zones. Ecological Modelling, 476, 110244. https://doi.org/10.1016/j.ecolmodel.2022.110244
Mohamed, M., & El-Saber, N. (2023). Toward Energy Transformation: Intelligent Decision-Making Model Based on Uncertainty Neutrosophic Theory. Neutrosophic Systems with Applications, 9(SE-Articles), 13–23.
https://doi.org/10.61356/j.nswa.2023.65
Abdel-Basset, M., Mohamed, M., Abdel-monem, A., & Elfattah, M. A. (2022). New extension of ordinal priority approach for multiple attribute decision-making problems: design and analysis. Complex & Intelligent Systems, 8(6), 4955–4970. https://doi.org/10.1007/s40747-022-00721-w
Andreas, A., Mavromoustakis, C. X., Mastorakis, G., Mumtaz, S., Batalla, J. M., & Pallis, E. (2020). Modified Machine Learning Techique for Curve Fitting on Regression Models for COVID-19 projections. 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2020-Septe, 1–6. https://doi.org/10.1109/CAMAD50429.2020.9209264
Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609–629. https://doi.org/10.1016/j.ins.2021.11.036
Mutavhatsindi, T., Sigauke, C., & Mbuvha, R. (2020). Forecasting Hourly Global Horizontal Solar Irradiance in South Africa Using Machine Learning Models. IEEE Access, 8, 198872–198885. https://doi.org/10.1109/ACCESS.2020.3034690
Bai, S.-B., Wang, J., Lü, G.-N., Zhou, P.-G., Hou, S.-S., & Xu, S.-N. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology, 115(1–2), 23–31. https://doi.org/10.1016/j.geomorph.2009.09.025
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Decision Making: Applications in Management and Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.