Risk Assessment Framework for Reverse Logistics in Waste Plastic Recycle Industry: A Hybrid Approach Incorporating FMEA Decision Model with AHP-LOPCOW- ARAS Under Trapezoidal Fuzzy Set

Authors

DOI:

https://doi.org/10.31181/dmame812025984

Keywords:

Failure Mode Effect Analysis (FMEA),, Analytic Hierarchy Process (AHP), LOgarithmic Percentage Change-driven Objective Weighting (LOPCOW), Additive Ratio Analysis (ARAS), Trapezoidal fuzzy set (TrFS)

Abstract

In this study, a novel risk assessment framework designed for evaluating the challenges of plastic packaging waste management in the context of reverse logistics is introduced. The framework leverages Failure Mode Effect Analysis (FMEA) to address decision-making in a fuzzy environment. To augment the traditional FMEA risk criteria, encompassing severity (S), occurrence (O), and detection (D), three additional essential risk criteria are introduced: cost of failure (C), complexity of failure resolution (H), and impact on business (I). These newly incorporated criteria significantly enhance the capacity to convey the multifaceted risks inherent in reverse logistics for the plastic recycling sector. Furthermore, a comprehensive literature review and expert validation are conducted to identify ten distinct failure modes. To subjectively and objectively determine the risk criteria weightings, a combination of Analytic Hierarchy Process (AHP) and LOgarithmic Percentage Change-driven Objective Weighting (LOPCOW) is employed. Finally, the Additive Ratio Assessment (ARAS) approach is applied to prioritize such failure modes. Recognizing the inherent imprecision and uncertainty associated with human decision-making, the trapezoidal fuzzy set (TrFS) is adopted throughout all decision-making processes. To showcase the proposed framework effectiveness, the framework is applied as a case study to a waste plastic recycling manufacturer in Thailand.

Downloads

Download data is not yet available.

References

Ren, Y., Shi, L., Bardow, A., Geyer, R., & Suh, S. (2020). Life-cycle environmental implications of China’s ban on post-consumer plastics import. Resources, Conservation and Recycling, 156, 104699. https://doi.org/10.1016/j.resconrec.2020.104699

Matthews, C., Moran, F., & Jaiswal, A. K. (2021). A review on European Union’s strategy for plastics in a circular economy and its impact on food safety. Journal of cleaner production, 283, 125263. https://doi.org/10.1016/j.jclepro.2020.125263

Ghayebzadeh, M., Taghipour, H., & Aslani, H. (2020). Estimation of plastic waste inputs from land into the Persian Gulf and the Gulf of Oman: An environmental disaster, scientific and social concerns. Science of the Total Environment, 733, 138942. https://doi.org/10.1016/j.scitotenv.2020.138942

Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H. S., Lokuge, W., Aravinithan, T., & Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction–A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling, 173, 105745. https://doi.org/10.1016/j.resconrec.2021.105745

Commeh, M., Dodoo-Arhin, D., Acquaye, E., Baah, I. N., Amoatey, N. K., Ephraim, J. H., Obada, D. O., Minh, D. P., & Nzihou, A. (2020). Plastic fuel conversion and characterisation: a waste valorization potential for Ghana. MRS Advances, 5, 1349-1356. https://doi.org/10.1557/adv.2020.127

Ghosh, S. K. (2020). Introduction to circular economy and summary analysis of chapters. Circular economy: Global perspective, 1-23. https://doi.org/10.1007/978-981-15-1052-6_1

Lange, J. P. (2021). Managing Plastic Waste-Sorting, Recycling, Disposal, and Product Redesign. ACS Sustainable Chemistry and Engineering, 9(47), 15722–15738. https://doi.org/10.1021/acssuschemeng.1c05013

Debrah, J. K., Vidal, D. G., & Dinis, M. A. P. (2021). Innovative use of plastic for a clean and sustainable environmental management: Learning cases from Ghana, Africa. Urban Science, 5(1), 12. https://doi.org/10.3390/urbansci5010012

Santos, R. B., de Oliveira, U. R., & Rocha, H. M. (2018). Failure mapping for occupational safety management in the film and television industry. International Journal of Production Economics, 203, 1-12. https://doi.org/10.1016/j.ijpe.2018.05.024

Swanson, D., Goel, L., Francisco, K., & Stock, J. (2018). An analysis of supply chain management research by topic. Supply Chain Management: An International Journal, 12(3), 100-116. https://doi.org/10.1108/SCM-05-2017-0166

Guarnieri, P., e Silva, L. C., & Levino, N. A. (2016). Analysis of electronic waste reverse logistics decisions using Strategic Options Development Analysis methodology: A Brazilian case. Journal of cleaner production, 133, 1105-1117. https://doi.org/10.1016/j.jclepro.2016.06.025

De Marchi, E., Pigliafreddo, S., Banterle, A., Parolini, M., & Cavaliere, A. (2020). Plastic packaging goes sustainable: An analysis of consumer preferences for plastic water bottles. Environmental Science & Policy, 114, 305-311. https://doi.org/10.1016/j.envsci.2020.08.014

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

Wang, Y., Gu, Y., Wu, Y., Zhou, G., Wang, H., Han, H., & Chang, T. (2020). Performance simulation and policy optimization of waste polyethylene terephthalate bottle recycling system in China. Resources, Conservation and Recycling, 162, 105014. https://doi.org/10.1016/j.resconrec.2020.105014

Lendvai, L., Ronkay, F., Wang, G., Zhang, S., Guo, S., Ahlawat, V., & Singh, T. (2022). Development and characterization of composites produced from recycled polyethylene terephthalate and waste marble dust. Polymer Composites, 43(6), 3951-3959. https://doi.org/10.1002/pc.26669

Zhang, J. H., Yang, B., & Chen, M. (2017). Challenges of the development for automotive parts remanufacturing in China. Journal of Cleaner Production, 140, 1087-1094. https://doi.org/10.1016/j.jclepro.2016.10.061

Tibben‐Lembke, R. S., & Rogers, D. S. (2002). Differences between forward and reverse logistics in a retail environment. Supply Chain Management: An International Journal, 7(5), 271-282. https://doi.org/10.1108/13598540210447719

Srivastava, S. K. (2008). Network design for reverse logistics. Omega, 36(4), 535-548. https://doi.org/10.1016/j.omega.2006.11.012

Roussat, N., Méhu, J., Abdelghafour, M., & Brula, P. (2008). Leaching behaviour of hazardous demolition waste. Waste Management, 28(11), 2032-2040. https://doi.org/10.1016/j.wasman.2007.10.019

Zhao, X., Hwang, B. G., & Gao, Y. (2016). A fuzzy synthetic evaluation approach for risk assessment: a case of Singapore's green projects. Journal of Cleaner Production, 115, 203-213. https://doi.org/10.1016/j.jclepro.2015.11.042

Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488. https://doi.org/10.1016/j.ijpe.2005.12.006

Noguchi, T., Park, W. J., & Kitagaki, R. (2015). Risk evaluation for recycled aggregate according to deleterious impurity content considering deconstruction scenarios and production methods. Resources, conservation and recycling, 104, 405-416. https://doi.org/10.1016/j.resconrec.2015.08.002

Rajesh, R., & Ravi, V. (2015). Supplier selection in resilient supply chains: a grey relational analysis approach. Journal of cleaner production, 86, 343-359. https://doi.org/10.1016/j.jclepro.2014.08.054

Lintukangas, K., Kähkönen, A. K., & Ritala, P. (2016). Supply risks as drivers of green supply management adoption. Journal of Cleaner Production, 112, 1901-1909. https://doi.org/10.1016/j.jclepro.2014.10.089

Oke, A., & Gopalakrishnan, M. (2009). Managing disruptions in supply chains: A case study of a retail supply chain. International journal of production economics, 118(1), 168-174. https://doi.org/10.1016/j.ijpe.2008.08.045

Hsu, C. W., & Hu, A. H. (2009). Applying hazardous substance management to supplier selection using analytic network process. Journal of cleaner production, 17(2), 255-264. https://doi.org/10.1016/j.jclepro.2008.05.004

Rameezdeen, R., Chileshe, N., Hosseini, M. R., & Lehmann, S. (2016). A qualitative examination of major barriers in implementation of reverse logistics within the South Australian construction sector. International Journal of Construction Management, 16(3), 185-196. https://doi.org/10.1080/15623599.2015.1110275

Cucchiella, F., & Gastaldi, M. (2006). Risk management in supply chain: a real option approach. Journal of Manufacturing Technology Management, 17(6), 700-720. https://doi.org/10.1108/17410380610678756

Tennakoon, G. A., Rameezdeen, R., & Chileshe, N. (2022). Diverting demolition waste toward secondary markets through integrated reverse logistics supply chains: A systematic literature review. Waste Management & Research, 40(3), 274-293. https://doi.org/10.1177/0734242X211021478

Ruairuen, W., Chanhun, K., Chainate, W., Ruangpanupan, N., Thipbanpot, P., & Khammanee, N. (2022). Microplastic contamination in blood cockles and mussels in Bandon Bay, Suratthani Province, Thailand. Trends in Sciences, 19(7), 3073-3073. https://doi.org/10.48048/tis.2022.3073

Leslie, H. A., Van Velzen, M. J., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment international, 163, 107199. Environment International, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199

Qu, S., Guo, Y., Ma, Z., Chen, W. Q., Liu, J., Liu, G., Wang, Y.,& Xu, M. (2019). Implications of China’s foreign waste ban on the global circular economy. Resources, Conservation and Recycling, 144, 252-255. https://doi.org/10.1016/j.resconrec.2019.01.004

Yu, Q., & Li, H. (2020). Moderate separation of household kitchen waste towards global optimization of municipal solid waste management. Journal of cleaner production, 277, 123330. https://doi.org/10.1016/j.jclepro.2020.123330

Sutthasil, N., Chiemchaisri, C., Chiemchaisri, W., Ishigaki, T., & Gheewala, S. H. (2023). Life cycle greenhouse gas emissions of emerging municipal solid waste management options: a case study in Thailand. Journal of Material Cycles and Waste Management, 25(2), 662-673. https://doi.org/10.1007/s10163-022-01584-6

Sudarto, S., Takahashi, K., Morikawa, K., & Nagasawa, K. (2016). The impact of capacity planning on product lifecycle for performance on sustainability dimensions in Reverse Logistics Social Responsibility. Journal of Cleaner Production, 133, 28-42. https://doi.org/10.1016/j.jclepro.2016.05.095

De Oliveira, U. R., Marins, F. A. S., Rocha, H. M., & Salomon, V. A. P. (2017). The ISO 31000 standard in supply chain risk management. Journal of Cleaner Production, 151, 616-633. https://doi.org/10.1016/j.jclepro.2017.03.054

Khan, M. A., Khan, R., Al-Zghoul, T. M., Khan, A., Hussain, A., Baarimah, A. O., & Arshad, M. A. (2024). Optimizing municipal solid waste management in urban Peshawar: A linear mathematical modeling and GIS approach for efficiency and sustainability. Case Studies in Chemical and Environmental Engineering, 9, 100704. https://doi.org/10.1016/j.cscee.2024.100704

Bing, X., Bloemhof, J. M., Ramos, T. R. P., Barbosa-Povoa, A. P., Wong, C. Y., & van der Vorst, J. G. (2016). Research challenges in municipal solid waste logistics management. Waste management, 48, 584-592. https://doi.org/10.1016/j.wasman.2015.11.025

Can Saglam, Y., Yildiz Çankaya, S., & Sezen, B. (2021). Proactive risk mitigation strategies and supply chain risk management performance: an empirical analysis for manufacturing firms in Turkey. Journal of Manufacturing Technology Management, 32(6), 1224-1244. https://doi.org/10.1108/JMTM-08-2019-0299

Santos, R. B., & de Oliveira, U. R. (2019). Analysis of occupational risk management tools for the film and television industry. International Journal of Industrial Ergonomics, 72, 199-211. https://doi.org/10.1016/j.ergon.2019.05.002

Chang, K. H., Chang, Y. C., & Lai, P. T. (2014). Applying the concept of exponential approach to enhance the assessment capability of FMEA. Journal of Intelligent Manufacturing, 25(6), 1413-1427. https://doi.org/10.1007/s10845-013-0747-9

Kim, K. O., & Zuo, M. J. (2018). General model for the risk priority number in failure mode and effects analysis. Reliability Engineering & System Safety, 169, 321-329. https://doi.org/10.1016/j.ress.2017.09.010

Liu, H. C., Wang, L. E., You, X. Y., & Wu, S. M. (2019). Failure mode and effect analysis with extended grey relational analysis method in cloud setting. Total Quality Management & Business Excellence, 30(7-8), 745-767. https://doi.org/10.1080/14783363.2017.1337506

Chi, C. F., Sigmund, D., & Astardi, M. O. (2020). Classification scheme for root cause and failure modes and effects analysis (FMEA) of passenger vehicle recalls. Reliability Engineering & System Safety, 200, 106929. https://doi.org/10.1016/j.ress.2020.106929

Lo, H. W., Liou, J. J., Huang, C. N., & Chuang, Y. C. (2019). A novel failure mode and effect analysis model for machine tool risk analysis. Reliability Engineering & System Safety, 183, 173-183. https://doi.org/10.1016/j.ress.2018.11.018

Lo, H. W., & Liou, J. J. (2018). A novel multiple-criteria decision-making-based FMEA model for risk assessment. Applied soft computing, 73, 684-696. https://doi.org/10.1016/j.asoc.2018.09.020

Ouyang, L., Zheng, W., Zhu, Y., & Zhou, X. (2020). An interval probability‐based FMEA model for risk assessment: A real‐world case. Quality and Reliability Engineering International, 36(1), 125-143. https://doi.org/10.1002/qre.2563

Kumari, S., Ahmad, K., Khan, Z. A., & Ahmad, S. (2023). Failure mode and effects analysis of common effluent treatment plants of humid sub-tropical regions using fuzzy based MCDM methods. Engineering Failure Analysis, 145, 107010. https://doi.org/10.1016/j.engfailanal.2022.107010

Reda, H., & Dvivedi, A. (2022). Decision-making on the selection of lean tools using fuzzy QFD and FMEA approach in the manufacturing industry. Expert Systems with Applications, 192, 116416 https://doi.org/10.1016/j.eswa.2021.116416

Aydin, N., Seker, S., & Şen, C. (2022). A new risk assessment framework for safety in oil and gas industry: Application of FMEA and BWM based picture fuzzy MABAC. Journal of Petroleum Science and Engineering, 219, 111059. https://doi.org/10.1016/j.petrol.2022.111059

Boral, S., & Chakraborty, S. (2021). Failure analysis of CNC machines due to human errors: An integrated IT2F-MCDM-based FMEA approach. Engineering Failure Analysis, 130, 105768 https://doi.org/10.1016/j.engfailanal.2021.105768

Karatop, B., Taşkan, B., Adar, E., & Kubat, C. (2021). Decision analysis related to the renewable energy investments in Turkey based on a Fuzzy AHP-EDAS-Fuzzy FMEA approach. Computers & Industrial Engineering, 151, 106958 https://doi.org/10.1016/j.cie.2020.106958

Khalilzadeh, M., Ghasemi, P., Afrasiabi, A., & Shakeri, H. (2021). Hybrid fuzzy MCDM and FMEA integrating with linear programming approach for the health and safety executive risks: a case study. Journal of modelling in management, 16(4), 1025-1053. https://doi.org/10.1108/JM2-12-2019-0285

Goksu, S., & Arslan, O. (2023). A quantitative dynamic risk assessment for ship operation using the fuzzy FMEA: The case of ship berthing/unberthing operation. Ocean Engineering, 287, 115548. https://doi.org/10.1016/j.oceaneng.2023.115548

Ceylan, B. O. (2023). Shipboard compressor system risk analysis by using rule-based fuzzy FMEA for preventing major marine accidents. Ocean Engineering, 272, 113888. https://doi.org/10.1016/j.oceaneng.2023.113888

ul Hassan, F., Nguyen, T., Le, T., & Le, C. (2023). Automated prioritization of construction project requirements using machine learning and fuzzy Failure Mode and Effects Analysis (FMEA). Automation in Construction, 154, 105013. https://doi.org/10.1016/j.autcon.2023.105013

Behnia, F., Ahmadabadi, H. Z., Schuelke-Leech, B. A., & Mirhassani, M. (2023). Developing a fuzzy optimized model for selecting a maintenance strategy in the paper industry: An integrated FGP-ANP-FMEA approach. Expert Systems with Applications, 232, 120899. https://doi.org/10.1016/j.eswa.2023.120899

Tian, Y., Song, S., Zhou, D., Pang, S., & Wei, C. (2023). Canonical triangular interval type-2 fuzzy set linguistic distribution assessment TODIM approach: A case study of FMEA for electric vehicles DC charging piles. Expert Systems with Applications, 223, 119826. https://doi.org/10.1016/j.eswa.2023.119826

Ribas, J. R., Severo, J. C. R., Guimaraes, L. F., & Perpetuo, K. P. C. (2021). A fuzzy FMEA assessment of hydroelectric earth dam failure modes: A case study in Central Brazil. Energy Reports, 7, 4412-4424. https://doi.org/10.1016/j.egyr.2021.07.01

Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. Journal of Sustainable Mining, 18(4), 257-268. https://doi.org/10.1016/j.jsm.2019.08.002

Safari, H., Faraji, Z., & Majidian, S. (2016). Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR. Journal of Intelligent Manufacturing, 27, 475-486. https://doi.org/10.1007/s10845-014-0880-0

Mohsen, O., & Fereshteh, N. (2017). An extended VIKOR method based on entropy measure for the failure modes risk assessment–A case study of the geothermal power plant (GPP). Safety science, 92, 160-172. https://doi.org/10.1016/j.ssci.2016.10.006

Wang, W., Liu, X., Chen, X., & Qin, Y. (2019). Risk assessment based on hybrid FMEA framework by considering decision maker’s psychological behavior character. Computers & Industrial Engineering, 136, 516-527. https://doi.org/10.1016/j.cie.2019.07.051

Shemshadi, A., Shirazi, H., Toreihi, M., & Tarokh, M. J. (2011). A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert systems with applications, 38(10), 12160-12167. https://doi.org/10.1016/j.eswa.2011.03.027

Samia, D., & Fares, I. (2024). Optimization the reliability of emergency safety barriers based on the subjective safety analysis and evidential reasoning theory. Case study. International Journal of Quality & Reliability Management, 41(1), 1-41. https://doi.org/10.1108/IJQRM-11-2022-0336

Wang, M., & Niu, D. (2019). Research on project post-evaluation of wind power based on improved ANP and fuzzy comprehensive evaluation model of trapezoid subordinate function improved by interval number. Renewable energy, 132, 255-265. https://doi.org/10.1016/j.renene.2018.08.009

Bihari, R., Jeevaraj, S., & Kumar, A. (2023). Geometric approach for ranking generalized trapezoidal fuzzy numbers and its application in selecting security guard service company. Expert Systems with Applications, 234, 121052. https://doi.org/10.1016/j.eswa.2023.121052

Zhang, X., Fu, A., Zhan, C., Pham, D. T., Zhao, Q., Qiang, T., Aljuaid, M., & Fu, C. (2024). Selective disassembly sequence planning under uncertainty using trapezoidal fuzzy numbers: A novel hybrid metaheuristic algorithm. Engineering Applications of Artificial Intelligence, 128, 107459. https://doi.org/10.1016/j.engappai.2023.107459

Chen, Z. H., Wu, D. F., & Luo, W. (2023). A hybrid emergency decision-making technique based on trapezoidal fuzzy best-worst method and zero-sum game. Expert Systems with Applications, 234, 120990. https://doi.org/10.1016/j.eswa.2023.120990

Majumder, P. (2023). An integrated trapezoidal fuzzy FUCOM with single-valued neutrosophic fuzzy MARCOS and GMDH method to determine the alternatives weight and its applications in efficiency analysis of water treatment plant. Expert Systems with Applications, 225, 120087. https://doi.org/10.1016/j.eswa.2023.120087

Zhao, M., Li, J., Zhang, Y., Han, Y., & Wei, J. (2023). Water cycle health assessment based on combined weight and hook trapezoid fuzzy TOPSIS model: A case study of nine provinces in the Yellow River basin, China. Ecological Indicators, 147, 109977. https://doi.org/10.1016/j.ecolind.2023.109977

Selvaraj, G., & Jeon, J. (2021). Assessment of national innovation capabilities of OECD countries using trapezoidal interval type-2 fuzzy ELECTRE III method. Data Technologies and Applications, 55(3), 400-429. https://doi.org/10.1108/DTA-07-2020-0154

Sadeghi, M., Mahmoudi, A., & Deng, X. (2023). Blockchain technology in construction organizations: risk assessment using trapezoidal fuzzy ordinal priority approach. Engineering, construction and architectural management, 30(7), 2767-2793. https://doi.org/10.1108/ECAM-01-2022-0014

Jin, F., Zhu, Y., Zhang, Y., Guo, S., Liu, J., & Zhou, L. (2023). Interval type-2 trapezoidal fuzzy multi-attribute decision-making method and its application to the corporate investment selection. Journal of Intelligent & Fuzzy Systems, 45(2),2319-2330. https://doi.org/10.3233/JIFS-230310

Lyu, H. M., Sun, W. J., Shen, S. L., & Zhou, A. N. (2020). Risk assessment using a new consulting process in fuzzy AHP. Journal of Construction Engineering and Management, 146(3), 04019112. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001757

Bakır, M., & Atalık, Ö. (2021). Application of fuzzy AHP and fuzzy MARCOS approach for the evaluation of e-service quality in the airline industry. Decision Making: Applications in Management and Engineering, 4(1), 127-152. https://doi.org/10.31181/dmame2104127b

Ecer, F., & Pamucar, D. (2022). A novel LOPCOW‐DOBI multi‐criteria sustainability performance assessment methodology: An application in developing country banking sector. Omega, 112, 102690 https://doi.org/10.1016/j.omega.2022.102690

Niu, W., Rong, Y., Yu, L., & Huang, L. (2022). A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment. Mathematics, 10(17), 3116. https://doi.org/10.3390/math10173116

Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and economic development of economy, 16(2), 159-172. https://doi.org/10.3846/tede.2010.10

Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580-597. https://doi.org/10.1016/j.renene.2019.06.157

Zheng, G., Zhu, N., Tian, Z., Chen, Y., & Sun, B. (2012). Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Safety science, 50(2), 228-239. https://doi.org/10.1016/j.ssci.2011.08.042

Lyu, H. M., Shen, S. L., Zhou, A., & Yang, J. (2020). Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Science of the Total Environment, 717, 135310. https://doi.org/10.1016/j.scitotenv.2019.135310

Garg, H., Majumder, P., & Nath, M. (2022). A hybrid trapezoidal fuzzy FUCOM-AHP approach and their application to identification of monkeypox risk factors. Computational and Applied Mathematics, 41(8), 379. https://doi.org/10.1007/s40314-022-02085-w

İç, Y. T., & Yurdakul, M. (2021). Development of a new trapezoidal fuzzy AHP-TOPSIS hybrid approach for manufacturing firm performance measurement. Granular Computing, 6, 915-929. https://doi.org/10.1007/s41066-020-00238-y

Yildiz, A., Ayyildiz, E., Taskin Gumus, A., & Ozkan, C. (2021). A framework to prioritize the public expectations from water treatment plants based on trapezoidal type-2 fuzzy ahp method. Environmental Management, 67(3), 439-448. https://doi.org/10.1007/s00267-020-01367-5

Ren, L., He, L., Yao, L., & Gong, G. (2022). A hybrid decision support model using a trapezoidal fuzzy-based multi-attribute preference model with AHP-entropy for groundwater remediation selection. Water, Air, & Soil Pollution, 233(11), 432. https://doi.org/10.1007/s11270-022-05893-2

Afzal, F., Yunfei, S., Junaid, D., & Hanif, M. S. (2020). Cost-risk contingency framework for managing cost overrun in metropolitan projects: Using fuzzy-AHP and simulation. International Journal of Managing Projects in Business, 13(5), 1121-1139. https://doi.org/10.1108/IJMPB-07-2019-0175

Simic, V., Dabic-Miletic, S., Tirkolaee, E. B., Stević, Ž., Ala, A., & Amirteimoori, A. (2023). Neutrosophic LOPCOW-ARAS model for prioritizing industry 4.0-based material handling technologies in smart and sustainable warehouse management systems. Applied Soft Computing, 143, 110400. https://doi.org/10.1016/j.asoc.2023.110400

Ulutaş, A., Topal, A., Görçün, Ö. F., & Ecer, F. (2024). Evaluation of third-party logistics service providers for car manufacturing firms using a novel integrated grey LOPCOW-PSI-MACONT model. Expert Systems with Applications, 241, 122680. https://doi.org/10.1016/j.eswa.2023.122680

Ecer, F., Küçükönder, H., Kaya, S. K., & Görçün, Ö. F. (2023). Sustainability performance analysis of micro-mobility solutions in urban transportation with a novel IVFNN-Delphi-LOPCOW-CoCoSo framework. Transportation research part a: policy and practice, 172, 103667. https://doi.org/10.1016/j.tra.2023.103667

Nila, B., & Roy, J. (2023). A new hybrid MCDM framework for third-party logistic provider selection under sustainability perspectives. Expert Systems with Applications, 234, 121009. https://doi.org/10.1016/j.eswa.2023.121009

Biswas, S., Bandyopadhyay, G., & Mukhopadhyaya, J. N. (2022). A multi-criteria based analytic framework for exploring the impact of Covid-19 on firm performance in emerging market. Decision Analytics Journal, 5, 100143. https://doi.org/10.1016/j.dajour.2022.100143

Bihari, R., Jeevaraj, S., & Kumar, A. (2023). Geometric approach for ranking generalized trapezoidal fuzzy numbers and its application in selecting security guard service company. Expert Systems with Applications, 234, 121052. https://doi.org/10.1016/j.eswa.2023.121052

Karagöz, S., Deveci, M., Simic, V., & Aydin, N. (2021). Interval type-2 Fuzzy ARAS method for recycling facility location problems. Applied Soft Computing, 102, 107107. https://doi.org/10.1016/j.asoc.2021.107107

Büyüközkan, G., & Güler, M. (2020). Smart watch evaluation with integrated hesitant fuzzy linguistic SAW-ARAS technique. Measurement, 153, 107353. https://doi.org/10.1016/j.measurement.2019.107353

Dahooie, J. H., Meidute-Kavaliauskiene, I., Vanaki, A. S., Podviezko, A., & Beheshti Jazan Abadi, E. (2020). Development of a firm export performance measurement model using a hybrid multi-attribute decision-making method. Management Decision, 58(11), 2349-2385. https://doi.org/10.1108/MD-09-2019-1156

Pramanik, D., Mondal, S. C., & Haldar, A. (2020). Resilient supplier selection to mitigate uncertainty: Soft-computing approach. Journal of Modelling in Management, 15(4), 1339-1361. https://doi.org/10.1108/JM2-01-2019-0027

Karbassi Yazdi, A., Wanke, P. F., Hanne, T., & Bottani, E. (2020). A decision-support approach under uncertainty for evaluating reverse logistics capabilities of healthcare providers in Iran. Journal of Enterprise Information Management, 33(5), 991-1022. https://doi.org/10.1108/JEIM-09-2019-0299

Published

2024-07-16

How to Cite

Sumrit, D., & Keeratibhubordee, J. (2024). Risk Assessment Framework for Reverse Logistics in Waste Plastic Recycle Industry: A Hybrid Approach Incorporating FMEA Decision Model with AHP-LOPCOW- ARAS Under Trapezoidal Fuzzy Set . Decision Making: Applications in Management and Engineering, 8(1), 42–81. https://doi.org/10.31181/dmame812025984